

Register Number:

Date:

ST JOSEPH'S UNIVERSITY, BENGALURU-27 OPEN ELECTIVE (MATHEMATICS) - 2nd SEMESTER SEMESTER EXAMINATION: APRIL 2024 (Examination conducted in May/ June 2024) **MTOE 5: MATHEMATICS FOR PHYSICAL SCIENCES II** (For summer batch students only)

(For current batch students only)

Time: 2 Hours

Max Marks: 60

This question paper contains **TWO** printed pages and **THREE** parts.

PART A

ANSWER ANY <u>SIX FULL</u> QUESTIONS.

1. Find the order and degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^4 + \frac{dy}{dx} = 0.$

2. Find the general solution of the differential equation $\frac{dy}{dx} = y \tan x$.

3. Reduce the differential equation $x\frac{dy}{dx} + y = y^2 \log x$ to linear form with suitable substitution.

4. If $u = x^3 + y^3 + z^3 - 3xyz$, then show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z} = 3u$.

- 5. Find the stationary points of the function $u = x^3 y^2 (1 x y)$.
- 6. Find the Laplace transform of $5^t \sin 2t$.
- 7. Find $\mathcal{L}\left\{\frac{e^{-t}\sin t}{t}\right\}$.

8. Find the inverse Laplace transform of $\frac{s+2}{s^2+36}$.

PART B

ANSWER ANY THREE FULL QUESTIONS.

- 9. Show that the differential equation $x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x$ is homogeneous and solve it.
- 10. Solve $\frac{dy}{dx} + y \cot x = 4x \csc x$, given that y = 0 when $x = \frac{\pi}{2}$.
- 11. Solve $\frac{dy}{dx} \left(\frac{1-x}{x}\right)y = -x.$

 $(6 \times 2 = 12)$

 $(3 \times 6 = 18)$

- 12. Find $\mathcal{L} \{ \sin t \sin 3t \sin 5t \}.$
- 13. Find $\mathcal{L}\left\{\cosh t \cdot \sin^3 2t\right\}$.

PART C

ANSWER ANY FIVE FULL QUESTIONS.

14. Solve (4x + 3y + 1) dx + (3x + 2y + 1) dy = 0.

15. Find the total differential of u and hence find $\frac{du}{dt}$ when $u = e^x \sin y$, where $x = \log t$, $y = t^2$.

- 16. If $x = r \cos \theta$ and $y = r \sin \theta$, find $J = \frac{\partial(x, y)}{\partial(r, \theta)}$ and $J' = \frac{\partial(r, \theta)}{\partial(x, y)}$ and hence verify JJ' = 1.
- 17. Expand $f(x,y) = x^2 + xy + y^2$ in powers of (x-2) and (y-3).

18. Find the inverse Laplace transform of the function $\frac{s+5}{s^2-6s+13}$.

19. Verify convolution theorem for the functions $f(t) = \sin t$, $g(t) = e^{-t}$.

20. Solve the initial value problem $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = e^{-t}$; y(0) = 0, y'(0) = 0 using Laplace transforms.

$$(5 \times 6 = 30)$$