Register Number:

ST JOSEPH'S UNIVERSITY, BENGALURU-27 B.Sc OPEN ELECTIVE (MATHEMATICS) - 4th Semester SEMESTER EXAMINATION: APRIL 2024 (Examination conducted in May/June 2024) <u>MTOE 11 -MATHEMATICS FOR PHYSICAL SCIENCES-IV</u> (For current batch students only.)

Duration: 2 Hours

Max. Marks: 60

This paper contains TWO pages and THREE parts.

PART A

Answer any \underline{SIX} of the following.

- 1. Check the integrability condition for the total differential equation xdx + ydy + zdz = 0.
- 2. Form the partial differential equation by eliminating arbitrary constants a and b from the equation z = ax + by + ab.
- 3. Check if the function $x^5 \cos^3(x)$ is even or odd in $(-\pi, \pi)$.
- 4. Prove that $\Gamma(1) = 1$.
- 5. Prove that Beta function is symmetric.
- 6. State Euler-Lagrange equation for variational problems.
- 7. Write the name and equation of the path on which a particle in the absence of friction will slide from one fixed point to another fixed point in the shortest time under the action of gravity.
- 8. Define geodesic and write the name of the geodesic on a right circular cylinder.

PART B

Answer any <u>THREE</u> of the following.

9. Check for integrability and solve $xdx + y^2dy + \frac{dz}{z}$.

10. Solve the simultaneous differential equation $\frac{dx}{yz} = \frac{dy}{zx} = \frac{dz}{xy}$.

- 11. Obtain the Fourier series of the function f(x) = x in the interval $(-\pi, \pi)$.
- 12. Obtain the general solution of the extremal problem $I(y) = \int_a^b \left[xy' + (y')^2 \right] dx$.
- 13. Find the shortest smooth plane curve joining any two distinct points $P(x_1, y_1)$ and $Q(x_2, y_2)$.

 $(6 \times 2 = 12)$

 $(3 \times 6 = 18)$

Answer any <u>FIVE</u> of the following.

 $(5 \times 6 = 30)$

- 14. Solve p + q = sin(x).
- 15. Solve $(D^2 2DD' + D'^2)z = e^{x+2y}$.
- 16. Obtain the Fourier half range sine series for the function f defined by $f(x) = (x 1)^2$ in (0, 1).
- 17. Evaluate the following integrals.

i)
$$\int_{0}^{\infty} e^{-x^{2}} x^{2n-1} dx, n > 1$$

ii) $\int_{0}^{\frac{\pi}{2}} \sin^{3} x \cos^{\frac{5}{2}} x dx$

- 18. Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$, where m, n > 0.
- 19. Find the equation of the curve formed by a heavy chain when it is suspended under the action of gravity between two fixed points.
- 20. Find the extremal of the functional $I(y) = \int_0^{\pi} \left[(y')^2 y^2 \right] dx$, under the boundary condition $y(0) = 0, y(\pi) = 1$ subjected to the constraint $\int_0^{\pi} y dx = 1$.