ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 B.Sc. MATHEMATICS- I SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2019
 MT 118 : MATHEMATICS PAPER I

Time- $\mathbf{2 ~}_{1 / 2} \mathbf{h r s}$
Max Marks-70

This question paper contains FOUR parts and TWO printed pages.

I. Answer any FIVE of the following.

1. Find the rank of the matrix $A=\left(\begin{array}{cccc}1 & -7 & 15 & -14 \\ 2 & 3 & -4 & 6 \\ 3 & -4 & 11 & -8 \\ 5 & -1 & 7 & -2\end{array}\right)$.
2. For what values of λ and μ the following system has an infinite number of solution $x+y+z=6 ; x+2 y+3 z=10 ; x+2 y+\lambda z=\mu$. Justify.
3. Find the $n^{\text {th }}$ derivative of $\cos (a x+b)$.
4. If $x=r \cos \theta, y=r \sin \theta$ then find $\frac{\partial(\mathrm{r}, \theta)}{\partial(\mathrm{x}, y)}$.
5. Evaluate $\int_{0}^{\frac{\pi}{4}} \tan ^{5} x d x$.
6. Show that the planes $2 x-4 y+3 z+5=0$ and $10 x+11 y+8 z-17=0$ are perpendicular.
7. Find the angle between the line $\frac{x-3}{2}=\frac{y-1}{1}=\frac{z+4}{-2}$ and the plane $x+y+4=0$.
8. Find the equation of the sphere which passes through $(-1,2,3)$ and has its centre at $(3,-1,1)$.
II. Answer any THREE of the following.
9. Reduce the following matrix to its normal form and hence find its rank

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
1 & -1 & 2 & 5 \\
3 & 1 & 1 & 8 \\
2 & -2 & 3 & 7
\end{array}\right]
$$

10. Find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0\end{array}\right]$ by elementary operations.
11. Test the consistency and solve:

$$
x+2 y-5 z=-13 ; 3 x-y+2 z=1 ; 2 x-2 y+3 z=2 \text { and } x-y+z=-1 .
$$

12. Diagonalise the matrix $A=\left[\begin{array}{ll}2 & 4 \\ 0 & 5\end{array}\right]$.

III. Answer any FIVE of the following.

13. If $y=\left(x+\sqrt{x^{2}-1}\right)^{m}$ show that $\left(x^{2}-1\right) y_{n+2}+(2 n+1) x y_{n+1}+\left(n^{2}-m^{2}\right) y_{n}=0$.
14. State and prove Euler's theorem and its extension for homogeneous functions.
15. If $u=f(r)$ where $r=\sqrt{x^{2}+y^{2}}$, show that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)$.
16. (i) If $z=e^{a x+b y} f(a x-b y)$ show that $b \frac{\partial z}{\partial x}+a \frac{\partial z}{\partial y}=2 a b z$
(ii) If $z=\tan ^{-1}\left(\frac{y}{x}\right)$ where $y=\tan ^{2} x$ find $\frac{d z}{d x}$
17. If $u=\frac{y z}{x}, v=\frac{z x}{y}, w=\frac{x y}{z}$ show that $\frac{\partial(u, v, w)}{\partial(x, y, z)}=4$
18. (i) Write the reduction formula for $\int_{0}^{\frac{\pi}{2}} \sin ^{m} x \cos ^{n} x d x$
(ii) Evaluate $\int_{0}^{\pi} x \sin ^{4} x \cos ^{6} x d x$
19. Evaluate $\int_{0}^{\infty} \frac{\tan ^{-1} a x}{x\left(1+x^{2}\right)} d x$, where a is a parameter, by applying differentiation under integral sign.

IV. Answer any TWO of the following.

(2X6=12)
20. Find the equation of the plane containing the line $\frac{x+2}{1}=\frac{y-3}{2}=\frac{z+4}{-3}$ and passing through the point $(1,3,2)$
21. Find the shortest distance between the lines $\frac{x-3}{1}=\frac{y-4}{-2}=\frac{z+2}{-1}$ and $3 x-y-10=0=2 x-z-4$
22. Find the equation of the sphere which touches the plane $3 x+2 y-z+2=0$ at $(1,-2,1)$ and passing through the origin.

