Register number:

Date and session:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BENGALURU-27 B.SC (MATHEMATICS) - VI SEMESTER SEMESTER EXAMINATION: April, 2024 (Examination conducted in May/June 2024) MT 6223: MATHEMATICS VIII

(For current batch students only)

Duration: 2 Hours

Max. Marks: 60

This paper contains **TWO** printed pages and **THREE** parts.

ANSWER ANY SIX QUESTIONS

- 1. Evaluate $\int_0^2 \int_0^{\sqrt{2x-x^2}} xy \, dy dx$.
- 2. Find the volume of the region bounded above by the plane z = y + 2 and below by the rectangle $R: 0 \le x \le 4, 0 \le y \le 2$.

PART A

- 3. Evaluate $\int_{1}^{e^3} \int_{1}^{e^2} \int_{1}^{e} \frac{1}{xyz} \, dx \, dy \, dz.$
- 4. Evaluate the line integral $\int_C -y \, dx + z \, dy + 2x \, dz$, where C is the helix $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + t\mathbf{k}$, $0 \le t \le 2\pi$.
- 5. State Gauss Divergence theorem

ANSWER ANY FIVE QUESTIONS

- 6. Compute U(P, f) for the function $f(x) = x^2$ and the partition $P = \{0, \frac{1}{3}, 1\}$ of [0, 1].
- 7. Compute the norm of the partition $P = \{-2.3, -2, -1.1, 0.6, 1.9, 2.7, 3.1\}$ of [-2.3, 3.1].
- 8. Give an example of a function f such that f^2 is integrable on some interval but f need not be.

PART B

- 9. Evaluate the integral $\iint_R (5x-y) dA$ by changing to polar coordinates, where R is the region in the first quadrant enclosed by the circle $x^2 + y^2 = 16$ and the lines x = 0 and y = x.
- 10. Evaluate $\int_{0}^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} xy \, dy dx$ by changing the order of integration.
- 11. Find the average value of $f(x, y) = x^2 y$ in the triangular region with vertices (0, 1), (1, 1), (2, 0)

6×2=12

5×6=30

12. Show that the differential form $2xy \, dx + (x^2 - z^2) \, dy - 2yz \, dz$ is exact and evaluate the integral $\int_{(0,0,0)}^{(1,2,3)} (2xy \, dx + (x^2 - z^2) \, dy - 2yz \, dz)$ over any path from (0,0,0) to (1,2,3).

13. By using the transformation u = x + 2y, v = x - y, evaluate $\int_0^{\frac{2}{3}} \int_y^{2-2y} (x + 2y)e^{y-x} dx dy$

- 14. State and proof Green's theorem.
- 15. Verify Stokes' Theorem for the vector field $\mathbf{F} = 2y\mathbf{i} x\mathbf{j} + z\mathbf{k}$ and surface $S: x^2 + y^2 + z^2 = 1, z \ge 0$.

PART C

ANSWER ANY THREE QUESTIONS

- 16. Let $f : [a, b] \to \mathbb{R}$ be an integrable function and $k \in \mathbb{R}$ be a constant. Show that $k \cdot f$ is integrable and that $\int_{a}^{b} k \cdot f = k \int_{a}^{b} f$.
- 17. Let P be a partition of [a, b] and Q be a refinement of P. Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Show that $L(P, f) \leq L(Q, f)$.
- 18. Show that a non-constant continuous function on [a, b] is integrable.
- 19. Let $f : [a, b] \to \mathbb{R}$ be an integrable function that is continuous at a point $c \in [a, b]$. Let $F : [a, b] \to \mathbb{R}$ be defined by $F(x) = \int_a^x f$. Show that F'(c) = f(c).

20. a) Show that the function $f:[0,1] \to \mathbb{R}$ defined by $f(x) = \begin{cases} x \cos(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$ is integrable.

b) True/False: The function $f: [-1,1] \to \mathbb{R}$ defined by $f(x) = \begin{cases} \frac{x}{x+1} & x \neq -1 \\ 0 & x = -1 \end{cases}$ is integrable. Explain your answer. [3+3]

******************END******************

3×6=18