

Registration Number:

Date & session:

ST.JOSEPH'S UNIVERSITY, BENGALURU -27

M.Sc (PHYSICS) – II SEMESTER SEMESTER EXAMINATION: APRIL 2024 (Examination conducted in May-June 2024) <u>PH 8323 – STATISTICAL PHYSICS</u> (For current batch students only)

Time: 2 Hours

This paper contains 3 printed pages and 2 parts

PART A

Answer any <u>FIVE</u> full questions.

(<u>5x7=35)</u>

Max Marks: 50

- 1. Two systems A and B, capable of only thermally interacting with each other, form a composite system $A^{(0)}$ that is adiabatically isolated from the rest of the universe. System A is described to have and internal energy between E and $E + \delta E$, while system
 - B has energy between $E\,'\,$ and $\,E\,'\!+\!\delta\,E\,'\,$.
 - (a) From general probabilistic considerations, show that on the attainment of equilibrium, the two systems will have $\frac{\partial \ln \Omega(E)}{\partial E} = \frac{\partial \ln \Omega'(E')}{\partial E'}$ where $\Omega(E)$ and $\Omega'(E')$ are
 - the total number of accessible states for the systems A and B respectively.
 - (b) The first derivative obtained above, may be denoted by $\beta(E)$ defined as the coldness function. Show that the coldness function is inversely proportional to E and that in order to seek a direct proportionality to E, we will produce two more parameters: the temperature T and the entropy S. How is S related to $\Omega(E)$? [5+2]
- 2.
- (a) With a figure, state what a Canonical Ensemble is.
- (b) What is the probability distribution for a Canonical Ensemble?
- (c) What is the mathematical expression for the Partition Function for the Canonical Distribution?
- (d) Obtain the mean energy for the Canonical Distribution in terms of its Partition Function.

[1+1+2+3]

- 3. Two systems each separately in thermal equilibrium with a heat and particle reservoir of temperature T each having energy E_r and E_s and number of particles N_r and N_s are combined to form one system (in thermal equilibrium with the same heat reservoir as earlier).
 - (a) Show that the partition function of the combined system will be the product of the partition functions of the individual systems.

- (b) Will the entropy of the combined system too be a product of the individual entropies? Compute the entropy and explain (marks can be given only if there are accompanying equations).
- (c) What about the grand potentials in this case will the grand potential of the combined system be a product of the individual grand potentials? Explain with equations. [3+2+2]
- 4.
- (a) State the equipartition theorem.
- (b) Using equipartition theorem, obtain the mean kinetic energy of a molecule in a gas.
- (c) What is the partition function of a molecule in an ideal gas and what is the mean internal energy obtained through this partition function? [1+2+4]
- 5. The quantum mechanical energy for a simple harmonic oscillator to be given by : $\begin{pmatrix} 1 \end{pmatrix}$

 $\epsilon_n = \left(n + \frac{1}{2}\right)\hbar\omega$ where *n* is the quantum number, \hbar , the reduced Planck constant and

- $\boldsymbol{\omega}$, the natural frequency of the oscillator
- (a) Obtain the mean quantum mechanical internal energy of the simple harmonic oscillator.
- (b) Using the result from (a) describe a solid in terms of connected simple harmonic oscillators.
- (c) Compute the heat capacity of a solid and from this derive the specific heat of solids.

[4+2+1]

6.

- (a) What is exchange degeneracy?
- (b) Describe exchange operator.
- (c) Show that there are two fundamental types of particles based on the symmetries of wavefunctions. [1+1+5]
- 7. For a system of N identical particles partitioned in a manner that the states having energy
 - ϵ_i have n_i occupancies (assuming the Grand Canonical distribution) we can write the

partition function to be: $Z_{GC} = \left(\sum_{n_1} e^{-\beta n_1(\epsilon_1 - \mu)}\right) \left(\sum_{n_2} e^{-\beta n_2(\epsilon_2 - \mu)}\right) \dots$ where μ is the

chemical potential of the system. Modify this partition function to describe Bosons and obtain the expression for the mean occupancy of Bosons.

PART-B

Answer any THREE full questions

[Constants: h=6.6x10⁻³⁴ J s (Planck's constant), 1eV = $1.6x10^{-19}$ J (electron volt to Joules), c=2.99x10⁸ m/s (speed of light), 1Å = $1x10^{-10}$ m (Angstrom to meters), k_B = $1.380649x10^{-23}$ JK⁻¹ (Boltzmann constant), N_A= 6.022×10^{23} mole⁻¹ (Avogadro Number), e = $1.6x10^{-19}$ C (electronic charge), m_{proton}= $1.673x10^{-27}$ kg (mass of proton), m_{electron}= $9.109x10^{-31}$ kg (mass of electron), G= $6.674x10^{-11}$ m³kg⁻¹s⁻² (Gravitational constant), M_☉= $1.9891x10^{30}$ kg (Solar mass), R_☉= $6.9x10^8$ m, σ = $5.67x10^{-8}$ Wm⁻²K⁻⁴(Stefan-Boltzmann constant), M_{Earth}= $5.97x10^{27}$ kg (Mass of Earth), D_{earth-sun}= $1.49x10^{11}$ m (Earth-Sun distance), 1 inch = 2.54 cm, 1AU= $1.496x10^{11}$ m, 1 ly= $9.461x10^{15}$ m, 1 pc= $3.086x10^{16}$ m]

$9x10^8$

(3x5=15)

- 8.
 - (a) A system is made of 3 particles such that they are confined to a potential providing a each particle a possible 4 set of states. What is the probability of finding 2 particles in the first excited states?
 - (b) A particle of mass m is confined to one dimension such that its position is in the domain: $-\ell \le x \le \ell$ and is acted upon by the Hooke's Law force (with a force constant k) with equilibrium at the center. Draw the phase space diagram for this system such that the particle has an energy between E and $E + \delta E$. [2+3]
- 9. The mass of air molecules is $4.81 \times 10^{-26} \text{ kg}$. On a day with the surface temperature of Earth being 36°C , what is the average height of air molecules close to the surface of Earth? You may take acceleration due to gravity to be $g=9.86 \text{ m.s}^{-2}$. How much would this mean height change if the temperature increased to 38°C ?
- 10. A certain system, confined to 1 dimension of length L_x , has the energy of its individual n^2

particles given as: $\epsilon_{xi} = \frac{p_{xi}^2}{2m}$ where p_{xi} is the momentum of the i^{th} particle along the

x direction and m is its mass. Assuming this particle to form a part of a Canonical Ensemble:

- (a) Obtain the single particle partition function (using Classical Mechanics arguments).
- (b) From the single particle partition function, obtain the average energy of the particle. [3+2] 11. A system consisting of 3 non-interacting particles, each of which can be in 4 possible quantum states, each of energy: $0, \epsilon, 2\epsilon, 3\epsilon$. Compute the partition function of the system if the particles are bosons.