ST JOSEPH'S UNIVERSITY, BENGALURU -27
 M.Sc. Physics $-4^{\text {th }}$ SEMESTER SEMESTER EXAMINATION: APRIL 2024
 (Examination conducted in May / June 2024)
 PH0120 - Solid state Physics
 (For current batch students only)

Time: 2 Hours

Max Marks: 50

This paper contains THREE printed pages and TWO parts

PART-A

Answer any FIVE questions. Each question carries SEVEN Marks.
[5 $\times 7=35$]

1. (a). Obtain an expression for the interplanar spacing for planes of the (h kI) type in the case of cubic structure.
(b). Construct first two Brillouin Zones encompassing the given lattice points within a 2D lattice structure.
(c). Given that \vec{k} represents the wavevector of incident light $\left(|\vec{k}|=\frac{2 \pi}{\lambda}\right.$, where λ is the wavelength of light) \vec{G} is a reciprocal lattice vector, express Bragg's law as $2 \vec{k} \cdot \vec{G}+\vec{G}^{2}=0$. Determine the boundary values that define the boundaries of the first and second Brillouin zones.
2. Using the Kronig-Penney model, explain the electron in a one-dimensional periodic potential. How does it lead to formation of energy bands in solids?
3. (a). Explain the single-particle tunneling effect for Superconductor-InsulatorSuperconductor (SIS) system Using current-voltage (I-V) curve.
(b). Demonstrate mathematically the perfect diamagnetic properties exhibited by superconductors.
4. Describe the Wiess molecular field theory of ferromagnetism and obtain the Cuire-Weiss law.
5. Find the expression relating the macroscopic dielectric constant with microscopic polarizabilities by driving the Classius-Mosotti relation.
6. In a linear chain, the lattice dynamics of a diatomic chain with masses M and m (where $M>m$) are arranged alternately by springs with a force constant K at a nearest neighbor distance of a. The dispersion relation connecting ω and k for a one-dimensional diatomic lattice with nearest neighbor interactions is expressed as
PH _0120_B_24

$$
\omega^{2}=K\left(\frac{1}{M}+\frac{1}{m}\right) \pm K\left[\left(\frac{1}{M}+\frac{1}{m}\right)^{2}-\frac{4 \sin ^{2} q a}{M m}\right]^{\frac{1}{2}}
$$

(i). Obtain frequency-wavevector relation for both acoustics and optical modes.
(ii). Plot the dispersion curve, ω versus q for one dimensional diatomic lattice $(M>m)$ in reduced zone scheme. Show that the both acoustic and optical branches in dispersion curve meet the zone boundary normally.
7. (a). How does the paramagnetic susceptibility of a substance vary with temperature?
(b). Describe the spontaneous polarization of Barium Titanate crystal.
(c). Explain the critical magnetic field in a superconductor. How does the critical magnetic field vary with temperature in Type I and Type II superconductor?

PART-B

Answer any THREE questions. Each question carries FIVE Marks.

[3 $\times 5=15$]
8. Find the total polarizability of CO_{2}, if its susceptibility is 0.985×10^{-3}. Density of carbon dioxide is $1.977 \mathrm{~kg} / \mathrm{m}^{3}$.
9. A paramagnetic substance contains 10^{28} ions $/ \mathrm{m}^{3}$ with magnetic moment of one Bohr magnetron. Calculate the paramagnetic susceptibility and the magnetization produced in a uniform magnetic field of $10^{6} \mathrm{~A} / \mathrm{m}$, at room temperature.
10. A superconductor has a critical temperature of 7.26 K at zero magnetic field and a critical field of $8 \times 10^{5} \mathrm{~A} / \mathrm{m}$ at 0 K . Find the critical field at 5 K .
11. (a). The distance between consecutive (111) planes in a cubic crystal is $2 \AA$. Determine the lattice constant.
(b). The Debye temperature of diamond is 2400 K . Determine the highest possible vibrational frequency at 5 K .
(c). The hall coefficient of a certain silicon specimen was found to be $-7.35 \times 10^{-5} \mathrm{~m}^{3} \mathrm{C}^{-1}$ from 100 to 400 K and the electrical conductivity was found to be $200 \Omega^{-1} \mathrm{~m}^{-1}$. Calculate the density and mobility of charges carriers.

List of Physics Constants

Speed of light in vacuum (c)	$2.997925 \times 10^{8} \mathrm{~ms}^{-1}$
Charge of electron (e)	$1.6021 \times 10^{-19} \mathrm{C}$
Rest mass of electron (m)	$9.109 \times 10^{-31} \mathrm{~kg}$
Atomic mass unit (m_{u})	$1.6604 \times 10^{-27} \mathrm{~kg}$
Electron radius (r_{e})	$2.828 \times 10^{-15} \mathrm{~m}$
1 Angstrom unit (\dot{A})	$10^{-10} \mathrm{~m}$
Avogadro's number (N_{A})	$6.02252 \times 10^{26} \mathrm{kmol}^{-1}$
Boltzmann constant (kB)	$1.38054 \times 10^{-23} \mathrm{jK}^{-1}$
Thermal energy at 300 K (kBT)	0.0258 J
Planck's constant (h)	$6.626 \times 10^{-34} \mathrm{Js}$
Permeability of free space (μ_{0})	$4 \mathrm{~m} \times 10^{-7} \mathrm{Hm}^{-1}$
Permittivity of free space (ε_{0})	$8.854 \times 10^{-12} \mathrm{Fm}^{-1}$
Rydberg constant for Hydrogen (RH)	$1.0967758 \times 10^{7} \mathrm{~m}^{-1}$
Universal gas constant ($\mathrm{Ru}=\mathrm{N}_{\text {AkB }}$)	$8.3143 \times 10^{3} \mathrm{Jkmol}^{-1} \mathrm{~K}$

