(Examination conducted in May/June 2024)
PH 0220: NUCLEAR AND PARTICLE PHYSICS (For current batch students only)

Time: 2 Hours
Max Marks: 50
This paper contains TWO printed pages and TWO parts
PART-A
Answer any FIVEquestions. Each question carries SEVEN marks
$5 \times 7=35$

1. (a) Discuss how the value of nuclear radius parameter can be obtained from mirror nuclei method.
(b) A nucleus ${ }_{z} X^{A}$ splits into two fragments: ${ }_{z 1} Y^{A 1}+{ }_{z 2} Y^{A 2}$, find the separation between the fragments at the moment of their separation.
2. In a nuclear reaction a bombarding particle 'a' is incident on a target nucleus ' A '. After the reaction takes place, the ejected particle ' b ' is emitted at an angle ' θ ' and the residual nucleus ' B ' recoils in such a way that the momentum is conserved. With a neat diagram, show that the Q-value of the reaction is given by

$$
Q=k_{b}\left(1+\frac{m_{b}}{m_{B}}\right)-k_{a}\left(1-\frac{m_{a}}{m_{B}}\right)-\frac{2}{m_{B}}\left(k_{a} k_{b} m_{a} m_{b}\right)^{1 / 2} \cos \theta
$$

3. (a) The total decay probability of emission per second of β-particles of all momentum from zero to maximum p_{m} is given by

$$
\lambda=\int_{0}^{p_{m}} P\left(p_{\beta}\right) d p_{\beta}=\int_{0}^{p_{m}} \frac{g^{2}\left|m_{i j}\right|^{2}}{2 \pi^{3} c^{3} h^{7}}\left(w_{m}-w_{k}\right)^{2} \times F\left(z, p_{\beta}\right) p_{\beta} d p_{\beta}
$$

Estimate the comparative life-time of β-decay.
(b) A very small magnetic moment, which is much smaller than an electron magnetic moment, is being detected in the case of neutrinos. Why?
4. (a) Describe the principle and working of a Geiger-Muller Counter with a neat diagram.
(b) Generally, the practical limitation to which the electrons can be accelerated by the electron-synchrotron is governed by energy loss. Explain it.
5. Derive the expression for nuclear reaction scattering cross-sections based on the partial wave analysis.
6. (a) Define an $\mathrm{SU}(3)$ group. Plot the octet representation of $\mathrm{SU}(3)$ group
(b)Explain the concept of strangeness. Discuss the Gell-Mann-Nishijima relation (3+4)
7. (a) Write a brief note on optical model.
(b) Contrast the direct nuclear reactions from compound nuclear reactions.

PART-B

Answer any THREE questions. Each question carries FIVE marks

$3 \times 5=15$
8. Establish the relation $\mathrm{A} \sim 2 Z$ for light nuclei using the semi-empirical mass formula. [Given: $\mathrm{ac}=0.71 \mathrm{MeV}$, $\mathrm{an}=22.7 \mathrm{MeV} ; \mathrm{M}\left(\mathrm{H}^{1}\right)=1.0078 \mathrm{u} ; \mathrm{M}(\mathrm{n})=1.0086 \mathrm{u}$].
9. (a) Compute the Q -value of the reaction ${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{n})^{10} \mathrm{~B}$. Given: atomic masses of ${ }^{9} \mathrm{Be}_{4}$, ${ }^{10} \mathrm{~B}_{5},{ }^{2} \mathrm{H}_{1}$ and ${ }^{0} \mathrm{n}_{1}$ are $9.012182 \mathrm{u}, 10.012983 \mathrm{u}, 2.014102 \mathrm{u}$ and 1.008665 u respectively.
(b) Calculate the energy released in the reaction: ${ }_{3} \mathrm{Li}^{6}+{ }^{2} \mathrm{n}^{1} \rightarrow_{2} \mathrm{He}^{4}+{ }_{1} \mathrm{H}^{3}$. [Given: Mass of ${ }_{3} \mathrm{Li}^{6},{ }_{1} \mathrm{H}^{3}, \mathrm{on}^{1},{ }_{2} \mathrm{He}^{4}$ are 6.015123u, 3.016029u, 1.008665 u and 4.002603u]
10. A mixed beam of protons and deuterons, which were accelerated to a potential of $10^{5} \mathrm{~V}$ is allowed to pass through a uniform magnetic field of 1.5 T in a direction at right angles to the field. Calculate the linear separation of deuteron beam from the proton beam, when each has described a semicircular path.
11. Find which one of the following elementary particle reactions is allowed and figure out the type of interaction also.
(a) $\pi^{+}+n^{0} \rightarrow \Lambda^{0}+K^{+}$
(b) $v_{e}+p^{+} \rightarrow n^{0}+\mu^{+}$

