Registration Number:

Date & session:

ST JOSEPH'S UNIVERSITY, BENGALURU -27 B.Sc. (Physics) – 2nd SEMESTER SEMESTER EXAMINATION: APRIL 2024 (Examination conducted in May / June 2024) PH 221: Electricity and Magnetism

(For regular/supplementary students)

Time: 2 Hours This paper contains 2 printed pages and 3 parts	Max Marks: 60
Part A	
Answer any four questions:	(4 x 8 =32)
1. (a) What is an electric dipole? Define dipole moment.(b) Derive an expression for the electric potential due to a dipole.	(2+6)
2. (a) Obtain an expression for the growth of charge in an RC circuit connected	d
to a DC source. (b) Define the time constant of the RC circuit and represent the growth of charge graphically.	(6+2)
3. (a) Define the capacitance of a capacitor. Deduce an expression for the	
capacitance of a parallel plate capacitor. (b) Derive an expression for electrostatic energy stored in a capacitor.	(5+3)
4. (a) Using the vector method, derive an expression for the resonant frequen	су
of a parallel resonance circuit with resistance in the inductance arm. (b) State Faraday's laws of electromagnetism.	(5+3)
5. (a) Derive an expression for the velocity of propagation of a plane	
(b) Define the Poynting vector and write the expression for the same.	(6+2)
6. (a) Show how orbital magnetic moment is related to orbital angular moment(b) Define the terms (i) Magnetic susceptibility and (ii)magnetic permeability	tum. /. (6+2)
Dart B	

<u>Part B</u>

(4 x 5 = 20)

7. If $\mathbf{A} = 2 \times z^2 \hat{\imath} - y \ge \hat{\jmath} + 3 \times z^3 \hat{k}$ find (i) ($\nabla \mathbf{x} \mathbf{A}$) and (ii) div \mathbf{A} at the point (1, 1, 1)

Answer any four questions:

PH221_B_24

- A silver wire 1 mm in diameter carries a charge of 90 coulomb in 1 hour and 15 minutes. Silver contains 5.8 x 10²² free electrons per cm³. Calculate the current in the wire in amperes. Also, calculate the drift velocity of the electrons.
- Calculate the induced dipole moment per unit volume of Helium gas if placed in an electric field of 6000 V/cm. The molecular polarizability of Helium is 2.33 x 10⁻⁴¹ farad-m² and the density of helium is 20.6 x 10¹⁹ molecules/cc.
- 10. A metal block of charge density $10^{23} m^{-3}$ is used in studying the Hall effect, in which a magnetic field of 0.5 Tesla is used and a current of 3A is passed. If the thickness of the block is 4mm and the area of cross-section is 100 cm², find the Hall coefficient and Hall voltage developed.
- 11. Find the magnitude of the current and its phase difference for the applied voltage when an alternating potential of 220 volts and 50 cycles is applied to a fan having an inductance of 0.2 H and a resistance of 20 ohms.
- 12. The intensity of sunlight reaching the Earth's surface is 2 calories/cm²/ min. Calculate the strength of the magnetic and electric fields of the sunlight.

Part C

Answer any four questions:

(4 x 2 = 8)

- 13. What is meant by lamellar and solenoidal vector fields?
- 14. Generally when an electric motor is switched off, a spark passes between the air gap of the switch contact. Why?
- 15. Can two equipotential surfaces intersect each other? Give reason.
- 16. Why does the path of a charged particle in a transverse magnetic field become circular?
- 17. 220 V AC. is more dangerous than 200 Volts DC Why?
- 18. Which law relates susceptibility to the temperature? Does the law hold good for all temperatures?

PH221_B_24