Registration Number:

Date & session:

ST JOSEPH'S UNIVERSITY, BENGALURU -27 M.Sc (BIG DATA ANALYTICS) – II SEMESTER SEMESTER EXAMINATION: APRIL 2024 (Examination conducted in May / June 2024) BDA 2321 – MACHINE LEARNING I (For current batch students only)

Time: 2 Hours

Max Marks: 50

This paper contains TWO printed pages and THREE parts

<u>PART- A</u>

Answer All questions

- 1. Define Machine learning with suitable example.
- 2. How Bayes theorem calculates posterior probability?
- 3. What is the entropy of a group in which:
 - a. All samples belong to the same class?
 - b. Each group having equal number of samples.
- 4. Why do we use cross-validation?
- 5. What is boosting?

PART - B

Answer any FIVE questions

- 6. Briefly explain supervised and unsupervised machine learning methods.
- 7. Differentiate PCA and ICA.
- 8. Explain the process of machine learning with example in each processing stages.
- 9. Differentiate between generative and discriminative learning models. In a multinational company, there are people speaking different languages of their own mother tongue. The auto teller engine hosted by the company has a task of determining the language that someone is speaking by determining the linguistic differences without learning any language. Which learning model it has to follow? Describe the model.
- 10. What is Hyperplane? Explain SVM model with an example
- 11. Explain any two Unsupervised learning methods in detail
- 12. Write a short note on LDA.

BDA 2321_A_24

4X5=20

<u> PART - C</u>

Answer any TWO questions

13. NASA wants to be able to discriminate between Martians (M) and Humans (H) based on the following characteristics:

Green \in {N, Y}, Legs \in {2, 3}, Height \in {S, T}, Smelly \in {N, Y}. The available training data is given in table below:

- a. Construct a decision tree using the ID3 algorithm.
- b. Write the learned concept for Martian as a set of conjunctive rules (e.g., if (green = Y and legs = 2 and height = T and smelly = N), then Martian; else Human).

	Species	Green	Legs	Height	Smelly
1	М	N	3	S	Y
2	М	Y	2	Т	N
3	М	Y	3	Т	N
4	М	N	2	S	Y
5	М	Y	3	Т	Ν
6	Н	Ν	2	Т	Y
7	Н	Ν	2	S	Ν
8	Н	N	2	Т	Ν
9	Н	Y	2	S	Ν
10	Н	N	2	Т	Y

- 14. Differentiate overfitting and underfitting. How it can affect model generalization? Explain the different evaluation methods of classification.
- 15. Given 14 training examples of the target concert play tennis with attributes outlook, temperature, humidity and wind. The frequency of play tennis = 9 Frequency of not play tennis = 5 Conditional probabilities are given as

P(outlook = rainy |Play = Yes) = 2/9 P(temp = cool|Play = Yes) = 3/9 P(humidity = High|Play = Yes) = 3/9 P(Windy = true|Play = Yes) = 3/9 P(Outlook = rainy|Play = No) = 3/5 P(temp = cool|Play = No) = 1/5 P(humidity = High|Play = No) = 4/5 P(Windy = true|Play=No) = 3/5

Classify the new instance whether play = yes or No (Outlook = sunny, Temp = cool, Humidity = high, wind = strong) using Naive Bayes Classifier.