Reg No:
Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS),BENGALURU-27
 B.Sc PHYSICS - I SEMESTER
 SEMESTER EXAMINATION :OCTOBER 2019
 PH118: Mechanics, Heat and Thermodynamics

Time: $2^{1 ⁄ 2} / 2$ Hours
MaxMarks:70
This question paper contains two printed pages and three parts

PART A

Answer any four of the following. Each question carries 10 marks.
1 A particle is moving along a curve in a plane. Derive expressions for its radial and transverse components of velocity and acceleration. Explain the term centripetal acceleration.

2a) Obtain the relation that gives the equation of motion of centre of mass of a two body problem and explain the term reduced mass of system.
b) Discuss the phenomenon of collision in one dimension between two particles when the collision is inelastic in the laboratory frame.

3 Derive an expression for the acceleration of a body rolling down a smooth inclined plane without slipping. What are the values of acceleration for a cylinder,solid sphere and hollow sphere of the same radius.

4 a) Mention the basic assumptions (any three) of kinetic theory of gases.
b) Derive an expression for pressure of an ideal monoatomic gas on the basis of kinetic theory of gases
5 a) State and explain zeroth law of thermodynamics.
b) Derive expressions for the work done in an isothermal and adiabatic process of an ideal gas.

6 a) Obtain any two Maxwell's thermodynamic relations from thermodynamic potentials and give their significance.
b) Distinguish between Joule Thomson expansion and adiabatic expansion

PART B
Solve any four of the following. Each question carries 5 marks ($4 \times 5=20$ marks)
$7 \quad$ A rocket of mass 10 kg has 90 kg of fuel.The exhaust velocity of fuel is $1.6 \mathrm{~km} / \mathrm{s}$. Calculate the ultimate vertical speed gained by the rocket, when the rate of consumption of fuel is $2 \mathrm{~kg} / \mathrm{s}$.

8 Calculate the effective weight of an astronaut ordinarily weighing 80kg when his rocket moves vertically upward with 2 g acceleration.

9 A frame \mathbf{S}^{\prime} is moving with velocity $3 \hat{i}+5 \hat{\jmath} \mathrm{~m} / \mathrm{s}$ relative to an inertial frame \mathbf{S}. A particle is moving with velocity $(t+3) \hat{\imath}+7 \hat{\jmath} \mathrm{~m} / \mathrm{s}$ with respect to \mathbf{S}. Find the acceleration of the particle in the frame S'.

10 Calculate the rms speed of a molecule of Hydrogen at NTP given $\mathrm{k}=1.38 \times 10^{-23} \mathrm{JK}^{-1}$, Avogadro number $=6.02 \times 10^{23}$ molecules $/ \mathrm{mol}$. Hence calculate most probable speed and average speed. Molecular mass of hydrogen $2 \mathrm{~g} / \mathrm{mol}$.

11 For Carbondioxide gas the Van der Waals constants are $a=0.364 \mathrm{~Pa} \mathrm{~m}{ }^{6} / \mathrm{mol}^{2}$ and $\mathrm{b}=4.27 \mathrm{x}$ $10^{-5} \mathrm{~m}^{3} / \mathrm{mol}$. If 1 mol of CO_{2} gas at 400 K is confined to a volume of $300 \mathrm{~cm}^{3}$, find the pressure of gas.

12 The value of γ for air is 1.4 . One mole of air is initially occupying a volume $0.45 \mathrm{~m}^{3}$ at 205 KPa expands adiabatically to a final volume of $0.65 \mathrm{~m}^{3}$. Determine a) the final pressure b)the final temperature c) the initial temperature. Molar gas constant $\mathrm{R}=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

PART C

Answer any five of the following. Each question carries $\mathbf{2}$ marks.
13 a) The torque of the weight of any body about any vertical axis is zero. Is it a correct statement? Explain.
b) Let I_{1} and I_{2} be the moments of inertia of two bodies of identical geometrical shape, the first one is made up of aluminium and the second iron. Which is greater I_{1} or I_{2} ? Explain.
c) A person sitting firmly over a rotating stool has his arms stretched. If he folds his arms, what will happen to his angular momentum.
d) When we rub our hands they become warm. Have we supplied heat to the hands? Explain.
e) Can we define the temperature of vacuum? Explain.
f) A car accelerates on a horizontal road due to the force exerted by the engine of the car. Is the statement true? Explain.

