ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 M.Sc. CHEMISTRY, III SEMESTER SEMESTER EXAMINATION: OCTOBER 2019 CH-9318 - PHYSICAL CHEMISTRY

Time: $2\frac{1}{2}$ hours

Max.Marks:-70

This paper contains 2 printed pages and three parts A,B and C

PART-A

Answer any SIX of the following:

6 x 2 = 12 Marks

- 1. The position of an electron in the hydrogen atom is determined with an accuracy of 0.001 nm. What is the uncertainty in the velocity of the electron. (mass of electron: 9.1×10^{-31} kg; $h = 6.62 \times 10^{-34}$ J.s).
- 2. Given = and = find the commutator of and for an arbitrary function f(x).
- 3. For a particle moving under no potential barrier give (i) Hamiltanian operator and (ii) expression for the wavelength.
- 4. Calculate the spacing between E_1 and E_2 energy levels of a particle of mass 10^{-30} kg in a one dimensional box of 0.1 nm length.
- 5. What is Born-Oppenheimer approximation? What is its significance?
- 6. Distinguish between π -electron bonding energy and delocalization energy.
- 7. Explain the coupled representation of angular momentum.
- 8. Give eigen value equations for orbital motion and spin motion.

PART-B

Answer any FOUR of the following:

4 x 12 = 48 marks

(6+6)

(4+4+4)

- 9. a) What are Hermitian operators? Show that eigen functions of a Hermitian operator corresponding to different eigen values are orthogonal.
 - b) Set-up time independent Schrodinger wave equation from the equation of a standing wave. Give any three properties of an acceptable wave function. (6+6)
- 10. a) The wave functions obtained by solving Schrodinger equation for simple harmonic oscillator are where where n = 0,1,2 and is known as

Hermite polynomial and y = .

- (i) calculate the first four wave functions and
- (ii) sketch first four normalized wave functions and square of them for the harmonic oscillator.
- (b) For the hydrogen atom
 - (i) calculate spherical harmonics for n = 1, l = 0, m = 0 and n = 2, l = 0, m = 0.
 - (ii) calculate radial wave functions for n = 1, l = 0 and n = 2, l = 0 and
 - (iii) using the above data give wave functions ψ_{100} and ψ_{200} .
- 11. a) Explain the need for approximate methods to solve Schrodinger equation. State and prove the method of variation.
 - b) By applying Heitler-London theory for hydrogen molecule derive symmetric and antisymmetric orbital wave functions with respect to ion exchange. Mention the shortcomings of Heitler-London treatment of hydrogen molecule. (6+6)
- 12. a) Define Ladder operators. Show that commutes with but not with . Show that lowers the eigen value of from k_m to $(k_m \hbar)$.
 - b) Using HMO theory for cyclopropenyl systems
 - (i) calculate the allowed energy levels (ii) sketch the ground state π -electron distribution and (iii) determine total π -electron energies and delocalization energies. (6+6)
- (iii) determine total π -electron energies and delocalization energies. 13. a) For a particle moving in a box of length 'a' the normalized wave function is given by
- . Determine the average value of the position of the particle.
 - b) Using Huckel approximation, find four HMOs of butadiene. (Given: $x_1 = x_2 = \pm 1.612$ and $x_3 = x_4 = \pm 0.618$). Sketch the graphical plots of these HMOs.
 - c) Briefly discuss the extended Huckel theory.
- 14. a) Prove that for the ground state of H_2^+ ion the orbital energies $E_1 = \text{ and } E_2 = .$
 - b) Explain SCF method for the determination of wave functions and energy of many electron systems. (6+6)

PART-C

Answer any TWO of the following:	$2 \ge 5 = 10$ marks
15. i) Calculate the effective nuclear charge for 3s and 3p electrons of sulphur.	
ii) Give the Slater determinant for the ground state of Be atom.	(3+2)
16. i) Calculate the values of J associated with the term symbol ³ D.	
ii) From the following identify the most stable states. Give reasons.	
${}^{1}S_{0}, {}^{3}S_{1}, {}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2} \text{ and } {}^{1}D_{2}$	(2+3)

- ¹S₀, ³S₁, ³P₀, ³P₁, ³P₂ and ¹D₂ (2+3)
 17. i) β-Carotenes are highly conjugated polyenes found in many vegetables. β-Carotene has maximum absorption of light that occurs at 480 nm. If this transition corresponds to an n = 11 to n = 12 transition of electron in a particle in a box system, what is length of the molecular box? (Given: mass of the electron = 9.1 x 10⁻³¹kg. h = 6.626 x 10⁻³⁴J.s. c = 3 x 10⁸ m/s)
 - (Given: mass of the electron = 9.1×10^{-31} kg, h = 6.626×10^{-34} J.s, c = 3×10^8 m/s) ii) For a particle in three dimensional box having dimensions $L_x = L_y = L_z = 1 \times 10^{-15}$ m calculate the energy of the particle in the (2,1,1) state. If the length of the box along x-axis is changed from 1×10^{-15} m to 1.5×10^{-15} m calculate the energy of the particle in the (2,1,1) state. (mass of the particle = 9.1×10^{-31} kg, h = 6.626×10^{-34} J.s). (2.5+2.5)