ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 M.Sc. CHEMISTRY, III SEMESTER
 SEMESTER EXAMINATION: OCTOBER 2019
 CH-9318 - PHYSICAL CHEMISTRY

Time: $2^{11 / 2}$ hours
Max.Marks:-70
This paper contains 2 printed pages and three parts A, B and C
PART-A
$6 \times 2=12$ Marks
Answer any SIX of the following:

1. The position of an electron in the hydrogen atom is determined with an accuracy of 0.001 nm . What is the uncertainty in the velocity of the electron. (mass of electron: $9.1 \times 10^{-31} \mathrm{~kg} ; \mathrm{h}=6.62 \times 10^{-34} \mathrm{~J} . \mathrm{s}$).
2. Given $=$ and $=$ find the commutator of and for an arbitrary function $f(x)$.
3. For a particle moving under no potential barrier give (i) Hamiltanian operator and (ii) expression for the wavelength.
4. Calculate the spacing between E_{1} and E_{2} energy levels of a particle of mass $10^{-30} \mathrm{~kg}$ in a one dimensional box of 0.1 nm length.
5. What is Born-Oppenheimer approximation? What is its signficance?

6 . Distinguish between π-electron bonding energy and delocalization energy.
7. Explain the coupled representation of angular momentum.
8. Give eigen value equations for orbital motion and spin motion.

PART-B
Answer any FOUR of the following: $4 \times 12=48$ marks
9. a) What are Hermitian operators? Show that eigen functions of a Hermitian operator corresponding to different eigen values are orthogonal.
b) Set-up time independent Schrodinger wave equation from the equation of a standing wave. Give any three properties of an acceptable wave function.
10. a) The wave functions obtained by solving Schrodinger equation for simple harmonic oscillator are where where $\mathrm{n}=0,1,2 \ldots \ldots$. and is known as

Hermite polynomial and $y=$.
(i) calculate the first four wave functions and
(ii) sketch first four normalized wave functions and square of them for the harmonic oscillator.
(b) For the hydrogen atom
(i) calculate spherical harmonics for $\mathrm{n}=1,1=0, \mathrm{~m}=0$ and $\mathrm{n}=2,1=0, \mathrm{~m}=0$.
(ii) calculate radial wave functions for $\mathrm{n}=1, \mathrm{l}=0$ and $\mathrm{n}=2, \mathrm{l}=0$ and
(iii) using the above data give wave functions ψ_{100} and ψ_{200}.
11. a) Explain the need for approximate methods to solve Schrodinger equation. State and prove the method of variation.
b) By applying Heitler-London theory for hydrogen molecule derive symmetric and antisymmetric orbital wave functions with respect to ion exchange. Mention the shortcomings of HeitlerLondon treatment of hydrogen molecule.
12. a) Define Ladder operators. Show that commutes with but not with. Show that lowers the eigen value of from k_{m} to $\left(\mathrm{k}_{\mathrm{m}}-\hbar\right)$.
b) Using HMO theory for cyclopropenyl systems
(i) calculate the allowed energy levels (ii) sketch the ground state π-electron distribution and
(iii) determine total π-electron energies and delocalization energies.
13. a) For a particle moving in a box of length 'a' the normalized wave function is given by
. Determine the average value of the position of the particle.
b) Using Huckel approximation, find four HMOs of butadiene. (Given: $x_{1}=x_{2}= \pm 1.612$ and $x_{3}=$ $\mathrm{X}_{4}= \pm 0.618$). Sketch the graphical plots of these HMOs.
c) Briefly discuss the extended Huckel theory.
14. a) Prove that for the ground state of $\mathrm{H}_{2}{ }^{+}$ion the orbital energies $\mathrm{E}_{1}=$ and $\mathrm{E}_{2}=$.
b) Explain SCF method for the determination of wave functions and energy of many electron systems.

Answer any TWO of the following:
15. i) Calculate the effective nuclear charge for 3 s and 3 p electrons of sulphur.
ii) Give the Slater determinant for the ground state of Be atom.
16. i) Calculate the values of J associated with the term symbol ${ }^{3} \mathrm{D}$.
ii) From the following identify the most stable states. Give reasons.
${ }^{1} \mathrm{~S}_{0},{ }^{3} \mathrm{~S}_{1},{ }^{3} \mathrm{P}_{0},{ }^{3} \mathrm{P}_{1},{ }^{3} \mathrm{P}_{2}$ and ${ }^{1} \mathrm{D}_{2}$
17. i) β-Carotenes are highly conjugated polyenes found in many vegetables. β-Carotene has maximum absorption of light that occurs at 480 nm . If this transition corresponds to an $\mathrm{n}=11$ to $\mathrm{n}=12$ transition of electron in a particle in a box system, what is length of the molecular box? (Given: mass of the electron $=9.1 \times 10^{-31} \mathrm{~kg}, \mathrm{~h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}, \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$)
ii) For a particle in three dimensional box having dimensions $\mathrm{L}_{\mathrm{x}}=\mathrm{L}_{\mathrm{y}}=\mathrm{L}_{\mathrm{z}}=1 \times 10^{-15} \mathrm{~m}$ calculate the energy of the particle in the $(2,1,1)$ state. If the length of the box along x-axis is changed from $1 \times 10^{-15} \mathrm{~m}$ to $1.5 \times 10^{-15} \mathrm{~m}$ calculate the energy of the particle in the $(2,1,1)$ state. $\left(\right.$ mass of the particle $\left.=9.1 \times 10^{-31} \mathrm{~kg}, \mathrm{~h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}\right)$.

