ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

M.Sc. PHYSICS - III SEMESTER

SEMESTER EXAMINATION- OCTOBER 2019

PH 9118 - QUANTUM MECHANICS II

Time-2 1/2 hrs.
Maximum Marks-70

This question paper has 4 printed pages and 2 parts and a table of constants and integrals

PART A

Answer any FIVE full questions.

$(5 \times 10=50)$

1. The Angular Momentum vector is given as: $\overrightarrow{\boldsymbol{L}}=\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{p}}$:
(a) obtain the components of the Angular Momentum operator in Cartesian Coordinates.
(5 Marks)
(b) work out the commutation relations between the various Cartesian components (each commutator component should be explicitly worked out) .
(5 Marks)
2. Using the equations: $\quad \hat{S_{ \pm}}\left|s, m_{s}\right\rangle=\hbar \sqrt{s(s+1)-m_{s}\left(m_{s} \pm 1\right)}\left|s, m_{s} \pm 1\right\rangle$ and $\hat{S_{z}}\left|s, m_{s}\right\rangle=\hbar m_{s}\left|s, m_{s}\right\rangle$ to obtain the eigenstates for a two particle system with spins $s_{1}=\frac{1}{2}$ and $s_{2}=1$ respectively.
3. Consider a one dimensional system of two distinguishable particles a and b located at points x_{1} and x_{2} respectively. Obtain the expression for the average of the square of the separation $\left\langle\left(x_{1}-x_{2}\right)^{2}\right\rangle$ of the two particles.
4. Using the Variational Principle (three dimensions) obtain the ground state energy for the Hydrogen atom. Use a trial wavefunction of the form $\quad \psi_{t}(\overrightarrow{\boldsymbol{r}})=A e^{-b r^{2}}$ where $r=|\overrightarrow{\boldsymbol{r}}|$. The expectation value of the Kinetic Energy is given as: $\langle T\rangle=\frac{\hbar^{2}}{2 m} 3 b$. Assume the Potential energy to be given as $V=\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{r}$ where all the terms are as per usual convention.
5. For a non-degenerate system undergoing perturbation, the first order change in energy is given as: $\quad E_{n}^{(1)}=\left\langle\phi_{n}^{(0)}\right| \hat{W}\left|\phi_{n}^{(0)}\right\rangle$ where \hat{W} is the perturbing Hamiltonian. The first order change to the eigenstates is given as: $\left|\phi_{n}^{(1)}\right\rangle=\sum_{m ; m \neq n}^{\infty} \frac{\left\langle\phi_{m}^{(0)}\right| \hat{W}\left|\phi_{n}^{(0)}\right\rangle}{E_{n}^{(0)}-E_{m}^{(0)}}\left|\phi_{m}^{(0)}\right\rangle$. Obtain the second order change to the energy.
6. Obtain the first order correction to the energy for a system with two fold degeneracy.
7. For time dependent perturbation, we usually assume the time dependent part of the wavefunction to be a linear combination of the eigenstates of the stationary Hamiltonian: $|\psi(t)\rangle=\sum_{n} c_{n}(t)\left|\phi_{n}\right\rangle$. When we factor out the time evolution of the stationary states, we have the Schrodinger equation reducing to: $i \hbar \frac{d b_{k}}{d t}=\lambda \sum_{n} b_{n}(t) e^{-i \omega_{n k} t}\left\langle\phi_{k}\right| \hat{W}\left|\phi_{n}\right\rangle$. If we perturb $\quad b_{k}$, show that the first order perturbed value of b_{k} : $b_{k}^{(1)}(t)=\frac{1}{i \hbar} \int_{0}^{t} e^{-i \omega_{n k} t^{\prime}}\left\langle\phi_{k}\right| \hat{W}\left|\phi_{n}\right\rangle d t^{\prime}$

PART B

Answer any FOUR full questions.

($4 \times 5=20$)
8. The Rodrigues' Formula for Associated Legendre Polynomials is given as:

$$
P_{\ell}^{m}(z)=(-1)^{m}\left(1-z^{2}\right)^{m / 2} \frac{d^{m}}{d z^{m}} P_{\ell}(z)
$$

or, alternatively,

$$
P_{\ell}^{m}(z)=(-1)^{m} \frac{\left(1-z^{2}\right)^{m / 2}}{2^{l} \ell!} \frac{d^{m+\ell}}{d z^{m+\ell}}\left(z^{2}-1\right)^{\ell}
$$

obtain
a) $P_{4}^{2}(z)$
(2 Marks)
b) $P_{4}^{3}(z)$
(3 Marks)
9. Two non-interacting particles of mass m are in a one dimensional infinite potential well. Remember, the wavefunction and energies for one particle in an infinite potential are given as:

$$
\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \frac{n \pi x}{L} \quad \text { and } \quad E_{n}=\frac{\hbar^{2}}{2 m} \frac{n^{2} \pi^{2}}{L^{2}}
$$

a) What are the ground state wavefunction and energies of the two particles if they are fermions (ignore spin for the particles)?
(3 Marks)
b) Verify that the wavefunction you obtained indeed satisfy the Schrodinger equation.
(2 Marks)
10. Using WKB approximation, obtain the bound state energies of a bouncing ball.
11. Gamow's theory of alpha decay assumes the alpha particle to be trapped in a potential well. Were the alpha particle to tunnel out of such a well, it would experience a repulsive potential of the form: $V(x)=\frac{1}{4 \pi \epsilon_{0}} \frac{2 Z e^{2}}{r}$. Obtain the tunneling probability for the alpha particle.
12. A Simple Harmonic Oscillator (SHO) is perturbed by a anharmonic potential so that the resultant Hamiltonian is given as $H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}+\lambda x^{3}$ where $\lambda \ll 1$. The ground state of the SHO is given as: $\quad \psi_{0}^{(0)}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\frac{m \omega}{2 \hbar} x^{2}}$. What is the first order perturbed value of energy?
13. We know that for the time dependent perturbation, the component of the state $\left|\phi_{k}\right|$ to which the state $\left|\phi_{i}\right\rangle$ transitions to is given to a first order as: $b_{k}^{(1)}(t)=\frac{1}{i \hbar} \int_{0}^{t} e^{i \omega_{k t^{\prime}} t^{\prime}}\left\langle\phi_{k}\right| \hat{W}\left|\phi_{i}\right\rangle d t^{\prime}$. Furthermore, the transition probability from an initial state $\left|\phi_{i}\right\rangle$ to a final state $\left|\phi_{f}\right\rangle \quad$ can be deduced from this as $P_{i f}=\lambda^{2}\left|b_{f}^{(1)}(t)\right|^{2}$. For $\hat{W}(t)=\hat{W}_{0} \sin \omega t$ compute $P_{i f}$.

(Some) Physical Constants

[Constants: $\mathbf{h = 6 . 6 2 6 0 7 0 \times 1 0 ^ { - 3 4 }} \mathrm{J} \mathrm{s}$ (Planck's constant), $\mathbf{1 e V}=1.6 \times 10^{-19} \mathrm{~J}$ (electron volt to Joules), $\mathbf{c}=2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (speed of light), $\mathbf{1} \AA=1 \times 10^{-10} \mathrm{~m}$ (Angstrom to meters), $\mathbf{e}=1.602176 \times 10^{-19} \mathrm{C}$ (electronic charge), $\boldsymbol{\varepsilon}_{0}=8.85418782 \times 10^{-12} \mathrm{~m}^{-3} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}$ (permittivity of free space), $\mathbf{m}_{\text {proton }}=1.672621898 \times 10^{-27} \mathrm{~kg}$ (mass of proton), $\mathbf{m}_{\text {electron }}=9.10938356 \times 10^{-31} \mathrm{~kg}$ (mass of electron), $\mathbf{m}_{\text {neutron }}=1.674927471 \times 10^{-27} \mathrm{~kg}$ (mass of neutron), $\mathbf{a}=$ $5.029 \times 10^{-10} \mathrm{~m}$ (Bohr radius), $\boldsymbol{\alpha}=1 / 137$ (Fine Structure Constant), $\mathbf{G}=6.674 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ (Gravitational constant), $\mathbf{M}_{\odot}=1.9891 \times 10^{30} \mathrm{~kg}$ (Solar mass), $\mathbf{R}_{\odot}=6.9 \times 10^{8} \mathrm{~m}$ (Sun's Radius), $\boldsymbol{\sigma}=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$ (StefanBoltzmann constant), $\mathbf{M}_{\text {Earth }}=5.97 \times 10^{27} \mathrm{~kg}$ (Mass of Earth), $\mathbf{D}_{\text {earth-sun }}=1.49 \times 10^{11} \mathrm{~m}$ (Earth-Sun distance), 1 inch $=2.54 \mathrm{~cm}$, 1foot=12 inches]

(a) Table of ${ }_{\text {some) }}$ Integrals

Gamma Function:
$\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t$
$\Gamma(n)=(n-1)!$
$\Gamma\left(\frac{1}{2}+n\right)=\frac{(2 n)!}{4^{n} n!} \sqrt{ } \pi$

(a) $\int_{0}^{\infty} e^{-2 b t} d t=\frac{1}{2 b}$
(k) $\int \frac{t^{2}}{\left(t^{2}+b^{2}\right)^{2}} d t=\left(-\frac{t}{\left(2 b^{2}+2 t^{2}\right)}+\frac{1}{2 b} \tan ^{-1}\left(\frac{t}{b}\right)\right)$
(b) $\int_{0}^{\infty} t e^{-2 b t} d t=\frac{1}{4 b^{2}}$
(I) $\int \frac{1}{\left(t^{2}+b^{2}\right)^{3}} d t=\frac{3}{8 b^{5}}\left(\frac{5 / 3 b^{3} t+b t^{3}}{\left(b^{2}+t^{2}\right)^{2}}+\tan ^{-1}\left(\frac{t}{b}\right)\right)$
(c) $\int_{0}^{\infty} t^{2} e^{-2 b t} d t=\frac{1}{4 b^{3}}$
(m) $\int \frac{t^{2}}{\left(t^{2}+b^{2}\right)^{4}} d t=\frac{1}{16 b^{5}}\left(\frac{b t^{5}+8 / 3 b^{3} t^{3}-3 b^{5} t}{\left(b^{2}+t^{2}\right)^{3}}+\tan ^{-1}\left(\frac{t}{b}\right)\right)$
(d) $\int_{0}^{\infty} t^{3} e^{-2 b t} d t=\frac{3}{8 b^{4}}$
(n) $\int \sqrt{a / x-1} d x=x \sqrt{a / x-1}+a \tan ^{-1}(\sqrt{a / x-1})$
(e) $\int_{0}^{\infty} t^{4} e^{-2 b t} d t=\frac{3}{4 b^{5}}$
(o) $\int \sqrt{1-a x} d x=-\frac{2(1-a x)^{3 / 2}}{3 a}$
(f) $\int_{0}^{\infty} t^{5} e^{-2 b t} d t=\frac{15}{8 b^{6}}$
(p) $\int \sqrt{1-a x^{2}} d x=\frac{1}{2} x \sqrt{1-a x^{2}}+\frac{\sin ^{-1} \sqrt{a} x}{2 \sqrt{a}}$
(g) $\int_{0}^{\infty} t^{6} e^{-2 b t} d t=\frac{45}{8 b^{7}}$
(q) $\int_{-\infty}^{\infty} e^{-\alpha t^{2}+i \omega t} d t=\sqrt{\frac{\pi}{\alpha}} e^{-\frac{()^{2}}{4 \alpha}}$
(h) $\int \frac{1}{t^{2}+b^{2}} d t=\frac{1}{b} \tan ^{-1}\left(\frac{t}{b}\right)$
(r) $\int_{0}^{\infty} t^{4} e^{-\alpha^{2} t^{2}} d t=\frac{3 \sqrt{ } \pi}{8 \alpha^{5}}$
(i) $\int \frac{1}{\left(t^{2}+b^{2}\right)^{2}} d t=\frac{1}{2 b^{3}}\left(\frac{b t}{\left(b^{2}+t^{2}\right)}+\tan ^{-1}\left(\frac{t}{b}\right)\right)$
(s) $\int_{0}^{\infty} t^{n} e^{-s t} d t=\frac{n!}{s^{n+1}} \quad$ (Laplace Transform)
(j) $\int \frac{1}{\left(t^{2}+b^{2}\right)^{4}} d t=\frac{1}{16 b^{7}}\left(\frac{15 t^{5} b+40 b^{3} 5^{3}+33 b^{5} t}{\left(3 t^{6}+9 b t^{4}+9 b^{3} t^{2}+b^{5}\right)}+5 \tan ^{-1}\left(\frac{t}{b}\right)\right)$

