DATE:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
B.Sc. ELECTRONICS - III SEMESTER

SEMESTER EXAMINATION: OCTOBER 2019 EL 318: DIGITAL ELECTRONICS

Time- $21 / 2 \mathrm{hrs}$
Max Marks-70
This paper contains two printed pages and three parts
PART-A
Answer any FIVE questions.
1 a) Explain the 8421 and EXCESS-3 digital codes with examples.
b) Describe the procedure to convert grey code to binary code and vice versa.

2 a) Draw the circuits of AND and NOT gates using discrete components and explain the working.
b) State and prove De Morgan's theorems using truth tables.

3 a) State and explain the Duality theorem.
b) Explain NAND as universal gate.

4 a) With the help of a diagram explain current sourcing in a standard TTL NAND gate.
b) Write a note on pulse characteristics and pulse duration in non ideal pulses. (4+4)

5 a) Write the truth table for FULL ADDER. Show how a FULL ADDER can be constructed using 2 Half Adders and an OR gate.
b) Construct 8:1 Multiplexer and describe it's working.

6 a) What is a decoder? Draw the logic diagram of a 3 to 8 decoder and write its truth table.
b) Write the logic diagram of a decimal to BCD encoder.

7 a) Explain the working of a RS flip flop with a necessary circuit. What are the limitations of RS flip flop?
b) Differentiate between asynchronous and synchronous counters.
c) Draw the circuit of an asynchronous decade counter.

PART-B

Answer any FIVE questions.
8 a) Convert the DECIMAL number 6529_{10} into equivalent OCTAL number.
b) Subtract the number $79_{(10)}$ from $25_{(10)}$ using two's complement method.

9 Simplify the following Boolean function

$$
Y=(A+B)(A+A B)+\bar{A} \bar{B}+\bar{A} \bar{C}
$$

10 Simplify using K map technique and realize the logic circuit using basic gates.

$$
F(A, B, C, D)=\sum m(0,1,3,9,11,12,13,15)+\sum d(2,8)
$$

11 a) Determine the fan-out when 74XX drives 74LSXX.

b) The propagation delay time for a gate is 10 ns and power dissipation of 2 mW . If 6 such gates are connected in series what is the total time delay and power dissipation of the circuit.

12 What will be the outputs at Y and Y_{0}, Y_{1}, Y_{2} and Y_{3}. Initially all reset.

13 Draw the circuit of a 4 bit Johnson Counter and explain its working.
14 Construct a modulo 9 ripple counter and draw its timing diagrams.

PART-C

Answer any FIVE questions.

$5 \times 2=10$

15 Simplify the following Boolean expression. $Y=A C+C\left(A+A^{\prime} B\right)$
16 Write the Canonical form of the following $F(A, B, C, D)=A^{\prime} B C+A D+B D^{\prime}+C D^{\prime}+A C^{\prime}+A^{\prime} B^{\prime}$
17 What is a priority encoder?
18 Draw the circuit of a two bit magnitude Comparator equality only.
19 What is the need for preset and clear inputs in a flip flop? Write their functions.
20 Draw the circuit of a CMOS inverter.
21 Identify the following ICs IC7476, IC74150, IC7490, IC7447

