Register Number:

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 B.Sc MATHEMATICS-III SEMESTER SEMESTER EXAMINATION: OCTOBER 2019 MT318: MATHEMATICS-III

Time: 2.5 Hours
Max. Marks: 70

The paper contains Two pages and Four parts .

I. ANSWER ANY FIVE OF THE FOLLOWING.

1. If a and b are distinct elements of a group G, then prove that either $a^{2} \neq b^{2}$ or $a^{3} \neq b^{3}$.
2. If a is an element of order 8 then find the order of a^{4} and a^{5} in $\langle a\rangle$.
3. Prove that the subgroup $S L_{2}(\mathbb{R})$ is normal in $G L_{2}(\mathbb{R})$ where $S L_{2}(\mathbb{R})=\left\{A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d \in \mathbb{R}\right.$ and $\left.\operatorname{det} A=1\right\}$ and $G L_{2}(\mathbb{R})=\left\{A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d \in \mathbb{R}\right.$ and $\left.\operatorname{det} A \neq 0\right\}$.
4. Prove that $f:(\mathbb{R},+) \rightarrow\left(\mathbb{R}^{*}, \times\right)$ given by $f(x)=e^{x}$ is a group homomorphism.
5. Show that $|x|$ is not differentiable at $x=0$.
6. Examine whether the point $(-2,-1)$ is an extremum of the function $f(x, y)=2 x^{2}-x y+y^{2}+7 x$.
7. Evaluate $\lim _{x \rightarrow 0} \frac{\log (\sin x)}{\cot x}$.
8. Solve the differential equation, $\left(D^{2}-7 D+12\right) y=0$ where $D=\frac{d}{d x}$.

II. ANSWER ANY THREE OF THE FOLLOWING.
 $(3 \times 6=18)$

9. Prove that every subgroup of a cyclic group is cyclic.
10. (a) State and prove Lagrange's theorem for finite groups.
(b) Without explicitly computing, explain why $\langle 2\rangle=\langle 26\rangle$ in \mathbb{Z}_{30}.
11. (a) Let H be a subgroup of a group G. Define the normalizer of H in G.
(b) Let H be a normal subgroup of G and K be any subgroup of G. Show that the set $H K:=\{h k: h \in H$ and $k \in K\}$, is a subgroup of G.
12. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism with Kernel K. Prove the following:
(a) K is a subgroup of G.
(b) If H is a cyclic subgroup of G then $\phi(H)$ is a cyclic subgroup of G^{\prime}.
13. State and prove fundamental theorem of homomorphism for groups.

III. ANSWER ANY FOUR OF THE FOLLOWING.

$(4 \times 6=24)$
14. Prove that a function which is continuous in a closed interval attains its bounds.
15. State and prove Rolle's Theorem.
16. Expand the function $\log (\sec x)$ upto the term containing x^{6} by Maclaurin's expansion.
17. Using the method of Lagrange's undetermined multipliers, find the maximum volume of a rectangular box with given surface area.
18. Evaluate $\lim _{x \rightarrow 0}\left(\frac{1}{x}\right)^{\tan x}$.

IV. ANSWER ANY THREE OF THE FOLLOWING.

$$
(3 \times 6=18)
$$

19. Solve the differential equation, $y^{\prime \prime}-3 y^{\prime}+2 y=x e^{x}$.
20. Solve the differential equation, $x \frac{d^{2} y}{d x^{2}}-2(1+x) \frac{d y}{d x}+(x+2) y=(x-2) e^{x}$ where $x>0$ given that $u=e^{x}$ is a part of the complementary function.
21. Solve the differential equation, $\frac{d^{2} y}{d x^{2}}-\frac{1}{x} \frac{d y}{d x}+4 x^{2} y=x^{4}$ by changing the independent variable.
22. Solve the differential equation, $x^{2} y^{\prime \prime}+x y^{\prime}-y=x^{2} e^{x}$ by method of Variation of Parameters.
