ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 B.Sc. MATHEMATICS-III SEMESTER
 SEMESTER EXAMINATION: OCTOBER-2019
 MT-318: MATHEMATICS III

Duration: 2.5 Hours
Max. Marks: 70

The paper contains TWO pages and FOUR parts

I. ANSWER ANY FIVE OF THE FOLLOWING.

1. Find two generators of $\left(\mathbb{Z}_{8},+_{8}\right)$.
2. Write all distinct cosets of $H=(4 \mathbb{Z},+)$ in a group $G=(\mathbb{Z},+)$.
3. State Lagrange's Theorem for finite Groups.
4. Let $G=(\mathbb{R},+)$ be a group of Real numbers and $f: G \rightarrow G$ be a mapping defined by $f(x)=3 x$. Is f a homomorphism? Justify.
5. Check whether the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\frac{1}{x}$ is continuous at the point $x=0$.
6. State Rolle's Theorem.
7. Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$
8. Solve the differential equation $y^{\prime \prime}-2 y^{\prime}+y=0$.

II. ANSWER ANY THREE OF THE FOLLOWING.

$(3 \times 6=18)$
9. a. Define an index of a subgroup of a finite group and find the index of $H=\{0,2,4\}$ which is a subgroup of $G=\left(\mathbb{Z}_{6},+_{6}\right)$.
b. Let H be a subgroup of a group G. Let $a, b \in G$. then prove that $a H=b H$ if and only if $a \in b H$.
$[2+4]$
10. If H is a normal subgroup in a group G and K is a subgroup of G, then prove that $H K$ is a subgroup in G.
11. Let G be a group and let $Z(G)$ be the center of a group G. If $G / Z(G)$ is cyclic, then prove that G is abelian.
12. a. Define group homomorphism.
b. Let $\phi: G \rightarrow G^{\prime}$ be a group homomorphism. If H is normal subgroup in G, then prove that $\phi(H)$ is a normal subgroup in G^{\prime}.
$[1+5]$
13. State and prove Fundamental theorem of Homomorphism of Groups.

III. ANSWER ANY FOUR OF THE FOLLOWING

14. Prove that every continuous function defined on a closed interval is bounded.
15. a. Examine the differentiability at $x=0$ of the function $f(x)$ defined by

$$
f(x)=\left\{\begin{array}{lll}
1+2 x & \text { if } & -1 \leq x \leq 0 \\
1-3 x & \text { if } & 0<x \leq 1
\end{array}\right.
$$

b. Verify the Rolle's theorem for the function $f(x)=x^{2}-6 x+8$ in the interval $[2,4]$
16. State and prove Cauchy's Mean Value theorem.
17. Find the extreme value for the function $x^{3} y^{2}(12-x-y)$ with $x>0, y>0$.
18. Evaluate $\lim _{x \rightarrow 0}\left[\frac{1}{x^{2}}-\frac{1}{x \tan x}\right]$.

IV. ANSWER ANY THREE OF THE FOLLOWING.

19. Solve the differential equation $y^{\prime \prime}+3 y^{\prime}+2 y=e^{2 x} \sin (x)$.
20. Solve the differential equation $4 x^{2} y^{\prime \prime}+4 x y^{\prime}-y=4 x^{2}$.
21. Solve the differential equation $y^{\prime \prime}-y=\frac{2}{1+e^{x}}$ by the method of variation of parameter.
22. Verify the exactness and solve the differential equation $x^{2}(1+x) y^{\prime \prime}+2 x(2+3 x) y^{\prime}+2(1+3 x) y=0$.
