ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

B.Sc. PHYSICS - III SEMESTER

SEMESTER EXAMINATION: OCTOBER 2019
PH 318 -ELECTROMAGNETISM, SOUND AND PHYSICAL OPTICS
Time- 2 1/2 hrs
Max Marks-70
This question paper contains 2 printed pages and 3 parts

PART-A

Answer any FOUR of the following.
[$4 \times 10=40]$

1. State and explain Ampere's circuital law. Obtain an expression for the magnetic field at a point on the axis of the solenoid.
2. a) State and prove the integral form of Gauss law in electrostatics.
b) Obtain an expression for electric intensity due to a dipole.
3. With relevant theory explain the formation of colours by a thin film in reflected light. and obtain the path difference between the reflected rays
4. Explain the theory of diffraction due to a straight edge.
5. (a) State and explain Brewster's law. .
(b) Give the theory of retarding plates and obtain general expression for elliptically polarized light.
6. Derive an expression for the electromagnetic wave propagation through an isotropic dielectric medium. Deduce an expression for the velocity of the wave

PART-B

Answer any FOUR of the following.
7. Monochromatic light emitted by a broad source of wavelength $6000 \AA$ falls normally on two plates of glass which encloses a wedge shaped film. The plates touch at one end and are separated at a point 15 cm from that end by a wire of 0.05 mm diameter. Find the distance between the two fringes.
8. A diffraction grating consists of 5×10^{5} lines $/ \mathrm{m}$ is used at normal incidence. Calculate the dispersive power of the grating in the first order spectrum for the wavelength $5461 \AA$
9. Calculate the velocity of sound waves in sulphur dioxide at NTP. Density of sulphur dioxide at NTP is $2.63 \mathrm{~kg} / \mathrm{m}^{3}$ and the adiabatic ratio of the gas is 1.29 . Calculate its velocity at 310 K .
10. Calculate the mutual inductance between two coils when a current of 4 A changing to 8 A in 0.5 s in one coil induces an emf of 50 mV in the other coil.
11. If $\mathbf{F}=\nabla\left(x y^{3} z^{2}\right)$ find div. \mathbf{F} and Curl F at the point $(1,-1,1)$.
12. A condenser with two horizontal metal plates separated by a distance of 4 mm is given potential of 9.8 V . A particle of mass 0.01 g and charge $(-\mathrm{q})$ is at rest at a point between the plates. Find the value of charge q .

PART-C

Answer and FIVE of the following questions.
13. a) Give the importance of Poisson's and Laplace's equation.
b) Why are Newton's rings circular?
c) A telescope of aperture 0.05 m views a wire gauze from a distance of 1 m by using illuminating light of wavelength 500 nm . What is the smallest structure of the gauze which can be clearly seen?
d) A calcite plate behaves as a half wave plate for a particular wavelength λ. What is the variation μ with respect to λ ?
e) Why speed of sound is more in hydrogen than in oxygen?
f) Eddy current is often a disadvantage but sometimes advantageous. Explain.

