

Register	Number:
----------	---------

Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE - 27

B.Sc STATISTICS – III SEMESTER SEMESTER EXAMINATION – OCTOBER 2019

ST 318 - STATISTICAL INFERENCE - I

Time: 2½ hrs Max: 70 Marks

This question paper has **TWO** printed pages and **THREE** parts

SECTION - A

I Answer any FIVE of the following:

 $5 \times 3 = 15$

- 1. Define estimator and estimate with an example.
- 2. Define consistent estimator and mention its invariance property.
- 3. If T is an unbiased estimator for θ , prove that T² is biased estimator for θ ².
- 4. Mention any three properties of maximum likelihood estimator
- 5. Define confidence interval and confidence coefficient.
- 6. Differentiate between simple and composite hypotheses
- 7. State Neyman -Pearson lemma.

SECTION - B

II Answer any FIVE of the following:

 $5 \times 7 = 35$

- 8. A) Let X1, X2, Xn, be a random sample from Exp(θ), obtain sufficient statistic for θ. (4)
 B) Show that Poisson distribution belongs to Power series family. (3)
- 9. A) Consider a random sample of size n from Geometric (θ). Compare following estimators using mean square error criterion

(i)
$$T_1 = \frac{\sum x}{n}$$

(ii)
$$T_2 = \frac{\sum x}{n-1}$$

(4)

- B) Define efficient estimator. Show that if T_1 and T_2 are 2 independent estimator of θ then T_1+T_2 is less efficient than T_1 (3)
- 10. Let X1, X2, Xn, be a random sample from Poisson with mean θ .

 Obtain the maximum likelihood estimator for P(X=0) (7)
- 11. A) Let X1, X2, Xn, be a random sample from U (a, b). Find the moment estimator of a and b. (5)
 - B) Distinguish between parameter and statistic.

(2)

	12. A) Obtain $100(1-\alpha)\%$ confidence interval for the unknown parameter μ of when σ is unknown.	normal popu (4)	lation		
	B) Explain Pivotal Quantity method of constructing confidence interval.	(3)			
	13. A) Define following terms (i) p-value (ii) Level of significance (iii) Null and alternative hypothesis.	(5)			
	B) Define non randomized test.	(2)			
	14. A) Briefly explain types of errors involved in testing of hypotheses with an ex	kample	(4)		
	B) Define critical region with neat diagram	(3)			
	SECTION - C				
Ш	Answer any TWO of the following:	2 x 10) = 20		
	15. (A) State Neyman Factorization theorem.	(2)			
	(B) If, $X \sim B(1,P)$, verify whether $\overline{X_n}$ consistent for P.	(5)			
	(C) Define maximum likelihood method of estimation	(3)			
	16. A) Derive $100(1-\alpha)$ % confidence interval for correlation coefficient.	(5)			
	B) Derive 100(1 – α)% confidence interval for population variance, when X where μ is unknown	~ N (μ, σ^2) (5)			
	17. A) Derive a most powerful test for testing H ₀ : $\mu = \mu_0$ against H ₁ : $\mu = \mu_1$, $\mu_1 > \mu_0$, when X ~ N(μ , σ^2) where σ^2 is unknown.	(7)			
	B) Define power of the test and obtain an expression for it	(3)			