Register Number:

Date:17-10-2019

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 B.Sc. CHEMISTRY-V SEMESTER

SEMESTER EXAMINATION - OCTOBER 2019 CH 5115-ORGANIC CHEMISTRY

Time: 2.5 hrs.

Max.marks:70

This question paper has three pages and contains three parts (21 questions). NMR and IR spectral data are given at the end of the question paper.

PART A

Answer any six questions.

- 1. How can you cleave ethers?
- 2. How is benzoyl chloride converted to benzaldehyde?
- 3. How can you convert propanol to propanal.
- 4. Calculate the chemical shift value of a proton appearing at 2000 Hz measured using a 400 MHz instrument and give the unit.
- 5. How do you prepare a carboxylic acid using Grignard reagent?
- 6. How is a primary amine prepared by Gabriel synthesis?
- 7. What is isoprene rule? What do you mean by a monoterpene.
- 8. How does glucose react with bromine water?

PART B

Answer any eight questions.

(6 x 8 = 48)

 $(2 \times 6 = 12)$

- (a) Give a reaction each for acid and base catalysed ring opening of unsymmetrical epoxides. Comment on the regioselectivity of these reactions.
 - (b) How do you convert α-D-glucose to α-D-methylglucoside? How can you distinguish between them using Tollen's reagent?
- 10. (a) Between aldehydes and ketones, which is more reactive towards nucleophilic addition? Explain.
 - (b) Draw the enol form of pentane-2,4-dione. Which of these two forms, keto or enol form of this compound, is more stable? Why?

11. Write chemical equations for the following reactions:

- (i) Michael addition
- (ii) Claisen–Schmidt reaction
- (iii) Wittig reaction
- 12. a) With suitable examples explain the effect of conjugation on UV absorption maximum.
 - (b) Explain the NMR spectrum of pure ethanol.
- 13. (a) How does the magnetic field due to circulation of π electrons affect the location of NMR signal of protons in case of acetylene and benzene?
 - (b) What are the two factors that frequency of IR stretching vibration related to? Give an example each to support the two factors.

- 14. (a) How can you convert (i) an aldehyde (ii) a nitilre to a carboxylic acid?(b) Give the mechanism of Claisen condensation of ethyl acetate in the presence of a base.
- 15. (a) How does a ketone react with 1 mol of alcohol in the presence of an acid? What happens when two moles of alcohol is reacted?
 - (b) How do you synthesise (i) an aldehyde form an ester (ii) ketone by Friedel Craft's reaction?
- 16. (a) Give an example of diazotization of an aromatic primary amine followed by coupling reaction.
 - (b) Compare the basicity of 1°, 2° and 3° amines in vapour phase.
- 17. (a) Write chemical equations for Kiliani-Fischer synthesis of an aldotetrose from gyceraldehyde.
 - (b) Explain mutarotation of glucose.
- 18. (a) Give reaction to prove the position of double bonds in citral.(b) How is the structure of the side chain confirmed in nicotine?

TABLE 9.1 Approximate Froton Chemical Shirts								
Type of Proton	Chemical Shift (δ, ppm)	Type of Proton	Chemical Shift (δ, ppm)					
1° Alkyl, RCH ₃	0.8-1.2	Alkyl bromide, RCH ₂ Br	3.4-3.6					
2° Alkyl, RCH ₂ R	1.2-1.5	Alkyl chloride, RCH ₂ Cl	3.6-3.8					
3° Alkyl, R ₃ CH	1.4-1.8	Vinylic, R ₂ C " CH ₂	4.6-5.0					
Allylic, $R_2C = C - CH_3$	1.6–1.9	Vinylic, R ₂ C=CH	5.2–5.7					
Ketone, RCCH ₃	2.1–2.6	Aromatic, Ar H Aldehyde, <mark>RCH</mark>	6.0–8.5 9.5–10.5					
Benzylic, ArCH ₃	2.2-2.5	0						
Acetylenic, RC # CH	2.5-3.1	Alcohol hydroxyl, ROH	0.5-6.0ª					
Alkyl iodide, RCH ₂ I	3.1-3.3	Amino, R9 NH ₂	1.0-5.0 ^a					
Ether, ROCH ₂ R	3.3-3.9	Phenolic, ArOH	4.5-7.7ª					
Alcohol, HOCH ₂ R	3.3–4.0	Carboxylic, RCOH	10–13ª					

TABLE 9.1 Approximate Proton Chemical Shifts

TABLE 2.7 Characteristic Infrared Absorptions of Groups

			Group	F	requency nge (cm ⁻¹)	Intensity ^a
	A .	Alkyl C—H (stretching) Isopropyl, —CH(CH	49)2	and	2853-2962 1380-1385 1365-1370	(ms) (s) (s)
		tert-Butyl, —C(CH ₃	ปร	and	1385-1395 ~1365	(m) (s)
	B.	Alkenyl C—H (stretching) C—C (stretching) R—CH—CH ₂	(aut of place		3010-3095 1620-1680 985-1000	(m) (v) (s)
		R ₂ C-CH ₂	C—H bendings)	and	880-900	(s) (s)
		cis-RCH—CHR trans-RCH—CHR			675-730 960-975	(s) (s)
	C.	Alkynyl =C-H (stretching	D		~3300	(s)
	D.	Aromatic Ar—H (stretching)			~3030	(V) (v)
		CC (stretching) Aromatic substitutio	on type		1450-1600	(m)
(Monosubstituted	bendings)	and	690-710 730-770	(very s) (very s)
		o-Disubstituted m-Disubstituted		and	735-770 680-725 750-810	(s) (s)
	_	p-Disubstituted		and	800-860	(very s)
		Alcohols, Phenols, O—H (stretching)	and Carboxylic Acids			
		Alcohols, phenols Alcohols, phenols Carboxylic acids	s (dilute solutions) s (hydrogen bonded) (hydrogen bonded)		3590-3650 3200-3550 2500-3000	(sharp, v) (broad, s) (broad, v)
	F.	Ethers and Alcohol	s s hina)		1020-1275	(s)
	G.	Aldehydes, Ketone C—O (stretching	es, Ethers, Carboxylic Acids, and Amides		1630-1780	(5)
		Aldehydes Ketones Esters	<i>"</i>		1690-1740 1680-1750 1735-1750	(s) (s) (s)
		Amides			1630-1690	(S) (S)
	H.	Amines			2200 2500	(m)
	I.	Nitriles			3300-3500	(111)
		C=N			2220-2260	(m)
