## Register Number:

DATE:

## ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 <br> B.A. ECONOMICS- V SEMESTER <br> SEMESTER EXAMINATION: OCTOBER 2019 <br> ECA 5318: MATHEMATICAL METHODS FOR ECONOMICS

Time- $21 / 2$ hrs.
Max Marks-70

## This paper contains 2 printed pages and 3 parts

## Part - A

I Answer any 10 of the following

1. Compute marginal productivity of labour at $\mathrm{K}=1$ and $\mathrm{L}=2$ for the production function $X=3 K^{2}+4 K^{2} L+2 L+2 K$
2. Find marginal Utilities of $X$ and $Y$ for the Utility function $\mathbf{U}=\mathbf{5 X Y}-\mathbf{Y}^{2}$
3. Determine Marginal Costs of X and Y for the total cost function $\mathrm{U}=\frac{x 3-y 3}{x 2+y 2}$
4. Find out $\frac{d Q}{d L}$ and $\frac{d Q}{d K}$ for the production function $Q=18 \mathrm{~L}^{2}-9 \mathrm{~K}^{2}+18 \mathrm{KL}$
5. Find $E$, elasticity of demand, when $P=40, M R=60$.
6. If MR is 50 and the price elasticity of demand is 2 , find $A R$
7. Find the simple interest for Rs 7500 at $13 \%$ for 5 years.
8. A monopolist is facing a linear demand function $P=100-4 Q$. The linear cost function is given by $C=50+20 Q$, calculate the Baumol sales maximisation output.
9. Find elasticity of total cost when total cost function is $T C=2 X^{2}+4 X+3$
10. The MC or $\frac{d y}{d x}$ of a certain firm as a function of units, the produce x is given by $y=1.064-0.005 x$, find the TC and AC functions, if $\mathrm{FC}=16$.
11. If the demand function is $P=25 D-20$ and supply function is $P=5 D+60$ find producers surplus.
12. Find the value of $X_{1}$ and $X_{2}$, by crammers' rule for the following behavioural equation of economics $6 X_{1}+5 X_{2}=49 \& 3 X_{1}+4 X_{2}=32$

II Answer any 2 of the following
13. A firm producing an output of ' $x$ ' quantity of a certain product at a Total cost TC given $\pi=a x^{3}-b x^{2}+c x$. Show that the AC is a parabola. Find the output for least AC
14. Calculate the compound interest for Rs 15000 at $4 \%$ per annum for 2 years.
15. When demand function $Q=\frac{20}{P+1}$ and Price, $P=3$, Find the Elasticity of Demand,

## PART-C

III. Answer any 2 of the following

$$
[2 \times 15=30]
$$

16. Optimize the following cob-Douglas production function subject to the given constraints by forming the Lagrangian function \& finding critica values for
[a] $U=X^{0.8} Y^{0.2}$ subject to $5 X+3 Y=75$
[b] $Q=10 K^{0.7} L^{0.1,}$ Given $P_{K}=28, P_{L}=10 \& B=4000$
17. Given the demand and Average cost function of a monopolistic firm $P=32-3 Q$

And $A C=Q+8+\frac{5}{Q}$, Find the level of output that maximises $\pi$, what are
The corresponding values of TR, AR, MR and TC
19. A consumer consuming 2 commodities has a utility function $\mathrm{Uf}(\mathrm{x}, \mathrm{y})$, the price of 1 unit of $X$ is Rs $1 /-$ and that of $Y$ is Rs 2 . The budget of the consumer is Rs 100. Determine the optimum number of 2 commodities which consumer would prefer in order to maximise the consumer utility.

