ST.JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 B.Sc. PHYSICS -V SEMESTER SEMESTER EXAMINATION-OCTOBER 2019 PH 5115: ELECTRONICS AND RELATIVITY.

Time: 21/2 hours

Max.Marks:70

This question paper has two printed pages and three parts

PART-A

Answer any Four of following:	(4x10=40)
1. a) With the circuit diagram explain the action of transistor(CE) as an amplifier. b) Define α and β of a transistor.	(8+2)
2. a) Explain the construction of JFET.b) With a circuit diagram explain the drain and transfer characteristics of JFET.	(2+8)
 3.a) Explain the working of phase shift oscillator with a circuit diagram and discuss the condition for frequency of oscillation. b) Give the construction and working of differentiator circuit using operational amplication. 	ie ifier. (5+5)
 4. a) What is a logic gate? Explain the construction and working of AND, OR gates using diodes. Give the truth table of them. b) State and prove De-Morgan's theorem. 	(7+3)
5. a) Define proper length and proper time. Derive an expression for length contractb) State the postulates of special theory of relativity.	on. (7+3)
6. Describe Michelson-Morley experiment and discuss the negative result.	(10)

PART-B

Solve any **Four** of the following: (4x5=20) 7. A transistor is connected in CE configuration. Draw the d.c.load line and determine the operating point .Given: $V_{cc} = 12V$, $R_c = 6 k\Omega$, $I_B = 20 \mu A$, $\beta = 50$.

- 8. In a Hartley Oscillator $L_1=0.2$ mH, $L_2=20\mu$ H and M = 40 μ H.Find the value of capacitor of the oscillatory circuit to obtain a frequency of 4.1MHz.
- 9. A JFET has I_D of 5mA. If the shorted gate drain current is I_{DSS} = 10mA and $V_{GS(off)}$ = -6V. Find the values of V_{GS} and V_P .

- 10. An atomic particle has a rest mass of $3x10^{-25}$ kg. Find its total energy when (i) It is at rest and (ii) It has a velocity of 0.8c.
- 11. Calculate the velocity of an elementary particle, whose mass is 10 times its rest mass.
- 12.In an inverting amplifier if $R_i = 10k\Omega$, $R_f = 100k\Omega$ and the supply voltages are $\pm 18V$, find (i) closed loop voltage gain (ii) Input impedance (III) Maximum operating frequency. Given: $V_{in} = 1 V_{pp}$, the slew rate= $0.5V/\mu s$

PART-C

Answer any **Five** of the following:

(5x2=10)

13. (a) α of a transistor is unity still it is called as current gain. Why?

- (b) What is the basic condition for the proper functioning of a transistor as an amplifier?
- (c) Even though the gain in open loop condition of an op amp is quite large, but it is seldom used. Why?
- (d) Which gate is called universal gate? Justify.
- (e) Why the ideas of relativity seems to be strange in day to day life? Explain.
- (f) If momentum is conserved in a collision of two as measured on a uniformly moving train, is it also conserved for the ground observer? Explain.