ST.JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 B.Sc. PHYSICS -V SEMESTER SEMESTER EXAMINATION-OCTOBER 2019

PH 5115: ELECTRONICS AND RELATIVITY.

Time: $\mathbf{2}^{11 / 2}$ hours

Max.Marks:70
This question paper has two printed pages and three parts
PART-A
Answer any Four of following:
$(4 \times 10=40)$

1. a) With the circuit diagram explain the action of transistor(CE) as an amplifier.
b) Define α and β of a transistor.
2. a) Explain the construction of JFET.
b) With a circuit diagram explain the drain and transfer characteristics of JFET.
3.a) Explain the working of phase shift oscillator with a circuit diagram and discuss the condition for frequency of oscillation.
b) Give the construction and working of differentiator circuit using operational amplifier.
3. a) What is a logic gate? Explain the construction and working of AND, OR gates using diodes. Give the truth table of them.
b) State and prove De-Morgan's theorem.
4. a) Define proper length and proper time. Derive an expression for length contraction.
b) State the postulates of special theory of relativity.
5. Describe Michelson-Morley experiment and discuss the negative result.

PART-B

Solve any Four of the following:
7. A transistor is connected in CE configuration. Draw the d.c.load line and determine the operating point .Given: $\mathrm{V}_{\mathrm{cc}}=12 \mathrm{~V}, \mathrm{R}_{\mathrm{c}}=6 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}, \boldsymbol{\beta}=50$.
8. In a Hartley Oscillator $L_{1}=0.2 \mathrm{mH}, \mathrm{L}_{2}=20 \mu \mathrm{H}$ and $\mathrm{M}=40 \mu \mathrm{H}$. Find the value of capacitor of the oscillatory circuit to obtain a frequency of 4.1 MHz .
9. A JFET has I_{D} of 5 mA . If the shorted gate drain current is $I_{D S S}=10 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{GS}(\text { off })}=-6 \mathrm{~V}$. Find the values of $V_{G S}$ and V_{P}.
10. An atomic particle has a rest mass of $3 \times 10^{-25} \mathrm{~kg}$. Find its total energy when (i) It is at rest and (ii) It has a velocity of 0.8 c .
11. Calculate the velocity of an elementary particle, whose mass is 10 times its rest mass.
12. In an inverting amplifier if $R_{i}=10 k \Omega, R_{f}=100 \mathrm{k} \Omega$ and the supply voltages are $\pm 18 \mathrm{~V}$, find (i) closed loop voltage gain (ii) Input impedance (III) Maximum operating frequency. Given: $\mathrm{V}_{\text {in }}=1 \mathrm{~V}_{\mathrm{pp}}$, the slew rate $=0.5 \mathrm{~V} / \mu \mathrm{s}$

PART-C

Answer any Five of the following:
13. (a) α of a transistor is unity still it is called as current gain. Why?
(b) What is the basic condition for the proper functioning of a transistor as an amplifier?
(c) Even though the gain in open loop condition of an op amp is quite large, but it is seldom used. Why?
(d) Which gate is called universal gate? Justify.
(e) Why the ideas of relativity seems to be strange in day to day life? Explain.
(f) If momentum is conserved in a collision of two as measured on a uniformly moving train, is it also conserved for the ground observer? Explain.

