

Register Number:

Date: 07-01-2021

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 MSc Computer Science – I SEMESTER END SEMESTER EXAMINATION: NOVEMBER 2020 GS 7218-THEORY OF COMPUTATION

Time- 2 1/2 hrs

Max Marks-70

This paper contains the printed pages and one part

1) Define the following with formula and example

(10)

- FA
- Extended transition function of a NFA
- Grammar.
- Regular Expression
- 2) Obtain a DFA to accept Strings of L, M and N starting with "LMN" and process the string "LMNL" using Extended transition function . (10)

3) Convert the following NFA into DFA.

(10)

4) a)Obtain a Regular Expression to accept language consisting of strings of 0's ans 1's and 2's starting with 001 and ending with 222.

(2+8)

b)Construct an NFA for the Regular Expression $[(X+Y)^*+(xyz)+(X+Y)]$.

5) Minimize the following DFA.

(10)

Transition	а	b
→A	В	F
В	G	С
*C	Α	С
D	С	G
E	Н	F
F	С	G
G	G	E
Н	G	С

6) a) Define E- CLOSURE and Write the E- CLOSURE of all the states in the given problem.

(10)

7) Obtain the Regular Expression from the Finite Automata by Eliminating States.

8) Eliminate UNIT PRODUCTIONS from the Grammar.

(10)

S→AB

A→a

B→C/b

C→D

D→E/bC

E→d/Ab

- 9) a) Explain the Principal of Pushdown Automata along with an Example Transition . (5)
 - b) Define Ambigious Grammar and Define Turing Machine. (5)

CS 7218_A_20