

Register Number:

Date: 09-01-2021

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 M.Sc. Computer Science –I SEMESTER SEMESTER EXAMINATION: NOVEMBER 2020 CS 7318- Design and Analysis of Algorithms

Time- 2 1/2 hrs

Max Marks-70

This paper contains three printed pages

Answer any seven questions. Each question carries 10 marks

7*10=70

1. a. What is Priori analysis and Posterior analysis?

b. Compare and Contrast between Analysis and Profiling.

[5+5]

2. a. Define order of growth. Justify why large values of 'n' are chosen?

b. What are the factors on which space efficiency depends?

c. Define Big-Oh notation. Show that $2x^3 + 3x^2 + 1 = O(x^3)$

[3+3+4]

- 3. a. What are the steps involved in Divide and Conquer method of design of algorithms?
 - b. Compare and contrast between Merge Sort and Quick Sort.
 - c. Given the following recurrence relation

$$T(n)=2T(n/2)+2$$
 $n>2$

≕1

n=2

-0

n=1

Prove that T(n)=3n/2 -2 by substitution method.

[2+3+5]

- 4. a. What are the different strategies that can be adopted to find solution for the Knapsack Problem?
 - b. Consider the Knapsack problem with n=3, M=20.

Profit[p1,p2,p3]=[25,24,15] and weights[w1,w2,w3]=[18,15,10].

Find the maximum profit earned?

[3+7]

- 5. a. What are spanning trees?
 - b. Mention two different algorithms to find minimum cost spanning tree.
 - c. Find the minimum cost spanning tree for the graph given below.

[2+2+6]

- 6. a. Define Principal of Optimality.
 - b. Compare Greedy Method and Dynamic Programming.
 - c. Consider the weighted graph. Determine all pair shortest paths.

[2+3+5]

- 7 a. What is the problem statement for job sequencing with deadlines? What are the objective function and constraint equation for this problem.
 - b. Let n=4.Let (p1,p2,p3,p4)=(100,10,15,27) and deadlines(d1,d2,d3,d4)=(2,1,2,1). Find the optimal solution for this problem of job sequencing with deadlines. What is the maximum profit?

 [4+6]
- 8. a. What is backtracking?
 - b. Explain 8-queens problem using backtracking.

[3+7]

- 9. a. Define NP-Hard and NP-Complete problems.
 - b. Explain DFS algorithm. Draw depth-first search (DFS) tree of the following digraph originating from vertex 0 and label the vertices with pre-order and post-order labels.

[4+6]

CS 7318_A_20