ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE - 27
 M.Sc BIG DATA ANALYTICS - I SEMESTER
 SEMESTER EXAMINATION -OCTOBER 2018
 BDA 1318: Linear Algebra \& Linear Programming Problems

Time: 2 1/2 hrs.
Maximum marks: $\mathbf{7 0}$ marks

Answer any Seven of the following

1. Define the following terms
a. Vector
b. Scalar
c. Matrix
d. Eigen Value \& Eigen Vector
e. Determinant of Matrix
2. Find the Inverse of the following matrix
(7 Marks)

$$
A=\left(\begin{array}{lll}
7 & 8 & 9 \\
3 & 6 & 4 \\
8 & 3 & 7
\end{array}\right)
$$

When does a matrix Inverse value is zero?
3. a) Solve the following system of linear equations

$$
3 x-4 y+z=6, \quad x+2 z=5, \quad x+5 y-7 z=8
$$

b) What is an idempotent matrix? Find if the matrix is idempotent matrix

$$
A=\left(\begin{array}{rrr}
2 & -2 & -4 \tag{5Marks}\\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right)
$$

4. State and prove the expression for Cramer's rule for a 3×3 matrix. (10 Marks)
5. Find the Eigen values and Eigen Vector of the following problem

$$
A=\left(\begin{array}{lll}
44 & 24 & 28 \\
24 & 46 & 30 \\
28 & 30 & 26
\end{array}\right)
$$

(10 Marks)
6. A) Is this matrix a positive definite matrix?

$$
\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

B) What are the assumptions of the Linear Programming Problem? (5 Marks)
7. Write the difference between the following.
a. Optimal Solution and Feasible solution
b. Minimization and Maximization
c. Degenerate solution and infinite solution
d. Simplex method and Two phase method
8. These products are produced using two machines, X and Y. Each unit of product 1 that is produced requires 15 minutes processing on machine X and 25 minutes processing on machine Y. Each unit of product 2 that is produced requires 7 minutes processing on machine X and 45 minutes processing on machine Y. The available time on machine X in week 5 is forecast to be 20 hours and on machine Y in week 5 is forecast to be 15 hours. Each unit of product 1 sold in week 5 gives a contribution to profit of $£ 10$ and each unit of product 2 sold in week 5 gives a contribution to profit of $£ 4$. It may not be possible to produce enough to meet your forecast demand for these products in week 5 and each unit of unsatisfied demand for product 1 costs $£ 3$, each unit of unsatisfied demand for product 2 costs $£ 1$.
a. Formulate the problem of deciding how much of each product to make in week 5 as a linear program.
b. Solve this linear program graphically.
9. Solve the problem using Big M method

Maximise $Z=x_{1}+5 x_{2}$
Subject to

$$
3 x_{1}+4 x_{2} \leq 6, x_{1}+3 x_{2} \geq 2 x 1, x 2 \geq 0
$$

