Register Number: DATE:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

M.Sc. PHYSICS - I SEMESTER

SEMESTER EXAMINATION (SUPPLEMENTARY) - OCTOBER 2018

PH 7118 - CLASSICAL MECHANICS

Time-2 1/2 hrs.

Maximum Marks-70

(5x10=50)

This question paper has 3 printed pages and 2 parts

<u>PART A</u>

Answer any FIVE full questions.

1. If *L* is the Lagrangian for a system having *n* degrees of freedom and satisfying the Lagrange's equation of motion: $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_k} \right) - \frac{\partial L}{\partial q_k} = 0$, show that changing the Lagrangian

into the form: $L' = L + \frac{dF}{dt}$ (where $F = F(q_{1}, q_{2}, q_{3}, ..., q_{k}, t)$ is an arbitrary function that is differentiable) keeps the Lagrange's equation invariant

is differentiable) keeps the Lagrange's equation invariant.

- 2. A system described by a set of generalized coordinates q_k undergoes a change dq_k due to translation.
 - (a) Show that the generalized force $Q_k = \sum_{i=1}^{N} \vec{F}_i \cdot \frac{\partial \vec{r}_i}{\partial q_k}$ is equal to the net force along the direction of translation. (3 Marks)
 - (b) Show also that the generalized momentum p_k is equal to the net linear momentum along the direction of translation (3 Marks)
 - (c) If q_k is cyclic, what does this imply for the generalized forces Q_k ? What does it imply for the linear momentum? (4 Marks)
- 3. Write down the Lagrangian for a particle of mass m moving in a central force field potential V(r) (that is conservative and dependent only on the radial component r of the position
 - of the particle)
 - (a) What will be the coordinate system to be used for the generalized coordinates. What are the symmetries in the problem and what are the conserved quantities? (2 Marks)
 - (b) Write down the Lagrangian of the system in terms of the first integrals. (2 Marks)
 - (c) What are the differential equations, the solutions of which will provide us the position of the

(6 Marks)

particle?

4. Starting with the definition $\mathcal{F} = \sum_{i=1}^{N} \vec{p}_i \cdot \vec{r}_i$ for N particles in a central force field, obtain the relation for Virial of Clausius (i.e. $\sum_{i=1}^{N} \vec{F}_i \cdot \vec{r}_i$) 5. The Poisson Bracket of two functions (of the canonical variables q and p): f(q, p) and g(q, p) is defined as: $[f, g]_{q, p} = \frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial g}{\partial q_i} \frac{\partial f}{\partial p_i}$. Compute (a) $[q_i, q_j]_{q, p}$ (2 Marks) (b) $[p_i, p_j]_{q, p} + [p_j, q_i]_{q, p}$ (2 Marks) (c) $[q_i, p_j]_{q, p} + [g, f]_{q, p}$ (2 Marks) (d) $[f, g]_{q, p} + [g, f]_{q, p}$ (2 Marks) (e) $[f, f]_{q, p}$ (2 Marks) 6. Considering a canonical transformation from a set of generalized coordinates and momenta: (q, p) at time t to a new set of *constant quantities* (which may be the 2n set of initial

(q, p) at time t to a new set of constant quantities (which may be the 2π set of initial values (q_0, p_0) at t=0, obtain the Hamilton-Jacobi equation (the new Hamiltonian will be related to the old Hamiltonian and the generating function via the equation: $G=H+\frac{\partial F}{\partial t}$.

7. For a rotating rigid body (with an angular velocity ω), it can be shown that any vector \vec{A} representing a point in its interior measured with respect to its center of mass (or origin of the

axis of rotation), transforms to inertial frame as: $\left(\frac{d\vec{A}}{dt}\right)_{inertial} = \left(\frac{d\vec{A}}{dt}\right)_{rot} + \vec{\omega} \times \vec{A}$, i.e. we

can conceive of a new operator $\left(\frac{d}{dt}\right)_{inertial} = \left(\frac{d}{dt}\right)_{rot} + \vec{\omega} \times .$

- (a) Apply this operator on the position vector \vec{r} to obtain the transformation rule for velocity \vec{v} (explain each term) (4 Marks)
- (b) Apply it once more on the velocity vector to obtain the transformation rule for acceleration \vec{a} . What is the physical significance of each term you get in this expression? (6 Marks)

PART B

Answer any <u>FOUR</u> full questions.

- 8.
- (a) Write down the Lagrangian of a block of mass m sliding down an inclined plane of angle α (angle between the base of inclined plane and the sloping side). Show your method of working for the computation of the potential energy (3 Marks)
- (b) Obtain the equation of motion using Lagrange's equation for this block as it slides down under gravity. (2 Marks)

<u>(4x5=20)</u>

- 9. Using the Euler equation find the extremum of the following functional: $J = \int_{-\infty}^{\infty} \left(3x + \sqrt{\frac{\partial y}{\partial x}} \right) dx$.
- 10. The semi-major axis of Neptune's orbit around the Sun is 4.495×10^{12} m . With the solar mass being: 1.99×10^{30} kg and the gravitation constant being: 6.674×10^{-11} m³ kg⁻¹ s⁻² . Using Kepler's Third law compute the period of revolution of Neptune around the Sun in Earth Years.
- 11. The Lagrangian for the Simple Harmonic Oscillator is given as: $L = \frac{1}{2}m\dot{x}^2 \frac{1}{2}m\omega^2 x^2$

where x is the generalized coordinate and \dot{x} is the generalized velocity. Compute the Hamiltonian of this system.

12. The Hamiltonian for a Simple Harmonic Oscillator is given as: $H = \frac{p^2}{2m} + \frac{1}{2}kq^2$. Obtain

the Hamilton Jacobi equation for this system.

- 13. A bead of mass m is constrained to move in a horizontal circle (the axis of the circle is along the z-axis) in the x-y plane on a table.
 - (a) Write down the Lagrangian for the bead.
 - ne bead. (2 Marks) f the block? (3 Marks)
 - (b) What is the equation of motion of the block?