

Register Number: Date: /04/2020

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 **B.Sc. CHEMISTRY – VI SEMESTER SEMESTER EXAMINATION: APRIL 2020 CH 6115: INORGANIC CHEMISTRY**

Time: 2 ¹/₂ hrs

This paper contains THREE printed pages and THREE parts

Element	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Rh
At. No.	21	22	23	24	25	26	27	28	29	30	45

PART A

Answer any **SIX** of the following questions.

- 1. Identify the coloured species among Ti³⁺, Sc³⁺. Give reason for your answer.
- 2. Transition metals form complexes easily. Why?
- 3. Give an example each for an ambidentate ligand and a bidentate ligand.
- 4. Write the chemical reaction and catalyst composition to represent Monsanto acetic acid process.
- 5. Mention any two roles of Ca²⁺ in biological systems.
- 6. Write the general outer electronic configuration of lanthanides.
- 7. Give any two consequences of lanthanide contraction.
- 8. What does Pourbaix diagram depict?

PART B

Answer any **EIGHT** of the following:

9. a) Give the IUPAC name for the following complexes: i) [Pt(NH₃)₄BrCl]Cl₂ ii) Ag₂[Hgl₄] iii) [Co(NH₃)₆][FeCl₆]

Max Marks:70

6 x 2 = 12

 $8 \times 6 = 48$

- b) Calculate EAN of the central metal ion in the following complexes.
 - i) $[Rh(NH_3)_6]^{3+}$ ii) $[CrCl_2(H_2O)_4]^+$ (3+3)
- 10. What are the postulates of Werner's theory? Explain how this theory accounts for the non-ionic nature of CoCl₃.3NH₃.
- 11. The complex ion [Co(NH₃)₆]³⁺ is octahedral and diamagnetic and the complex ion [CoF₆]³⁻ is also octahedral but paramagnetic. Explain this observation using Valence Bond Theory.
- Draw and explain the crystal field splitting of d orbitals in a tetrahedral field of ligands.
 Calculate the CFSE for a tetrahedral d⁴ system.
- 13. Identify the complex from each pair which has higher value of Δ_0 . Give reason for your choice.
 - i) $[Fe(CN)_6]^{3-}$ and $[Fe(CN)_6]^{4-}$
 - ii) $[Co(NH_3)_6]^{3+}$ and $[Rh(NH_3)_6]^{3+}$
 - iii) $[Co(CI)_6]^{4-}$ and $[Co(en)_3]^{2+}$
- 14. Explain the mechanism of co-operativity in the binding of oxygen to haemoglobin.
- 15. Give the synthesis and draw the structure of the following organometallic compounds.
 - i) $Ni(CO)_4$ ii) $K[PtCl_3(C_2H_4)]$
- 16. Discuss the bonding in transition metal carbonyls. Explain the synergic effect in M-CO bonding.
- 17. Explain the separation of lanthanide ions by ion-exchange chromatography.
- 18. Discuss the extraction of lithium from lepidolite.

PART C

Answer any **TWO** of the following:

2 X 5 = 10

- 19. An octahedral complex of Co(III) with two ethylene diamine, one Cl⁻, and one NO₂⁻ ligands has been prepared. Give the structures of a pair of linkage isomers and optical isomers each.
- 20. A first row transition metal ion M^{3+} forms two octahedral coordination complexes A and B. The CFSE of A= -6 Dq and B= -16Dq. Identify the metal ion with proper explanation.

21. The Frost diagram of Mn is given below. Identify,

- a) The most stable species under acidic medium
- b) The species that likely to undergo disproportionation under basic medium.
- c) The redox couple with highest reduction potential
- d) The best reducing agent.
- e) Potassium permanganate can be used to oxidize chloride ions to produce chlorine gas and Mn²⁺. Which medium will be the best to run this reaction?

CH6115_C_19