

Register Number: Date: /04/2020

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 B.Sc. CHEMISTRY – VI SEMESTER SEMESTER EXAMINATION: APRIL 2020 CH 6115: INORGANIC CHEMISTRY

Time- 2½ hrs Max Marks- 70

This paper contains **two** printed pages and **three** parts.

Atomic Number	21	22	23	24	25	26	27	28	29	30
Elements	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn

PART A

Answer any SIX of the following questions.

 $6 \times 2 = 12$

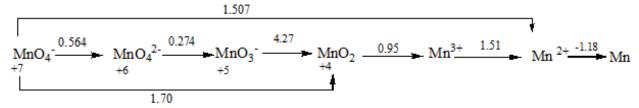
- 1) Transition metals and their compounds are potential catalysts. Give reasons.
- 2) Calculate the EAN of Fe in $[Fe(C_2O_4)_3]^{3-}$.
- 3) Draw the structure of [Zn(EDTA)]²⁻.
- 4) What is Monsanto acetic acid process? Write the formula of the catalyst used in this process.
- 5) Give any two general applications of trace metals in human body.
- 6) Explain why some lanthanides exhibit stable +2 or +4 oxidation states in addition to the characteristic +3 oxidation state.
- 7) Name an important ore of uranium. Give its composition.
- 8) What is disproportionation? Give an example.

PART B

Answer any **EIGHT** of the following questions.

 $8 \times 6 = 48$

- 9) Both [Fe(CN)₆]³⁻and [FeF₆]³⁻ are octahedral complexes. [Fe(CN)₆]³⁻ has a magnetic moment corresponding to one unpaired electron whereas [FeF₆]³⁻ has a magnetic moment corresponding to 5 unpaired electrons. Explain using Valence Bond Theory.
- 10) Draw the d- orbital electronic arrangements in (i) the high spin and (ii) the low spin octahedral complexes of Co²⁺. Calculate (i) the CFSE of high spin octahedral Co²⁺ complex and (ii) the magnetic moment of the low spin octahedral Co²⁺ complex.


- 11) Give the basic postulates of Crystal Field Theory. Explain the interaction of d- orbitals with ligands in an octahedral complex. Draw the d-orbital splitting pattern in an octahedral ligand field.
- 12) a) Give the IUPAC names of the following complexes:
 - i) $[Co(NH_3)_3(NO_2)_3]$
 - ii) Na[Cr(EDTA)]
 - iii) $[Ni(en)_2(H_2O)_2] SO_4$
 - b) $[Cu(NH_3)_6]^{2+}$ is deep blue coloured whereas $[CuCl_4]^{2-}$ is yellow coloured eventhough both contain Cu^{2+} ion. Account for this difference in colour qualitatively. (3+3)
- 13) a) What is ionization isomerism? Illustrate with an example.
 - b) Draw structures of all the stereoisomers of [CoCl₂(en)₂]⁺. (3+3)
- 14) Draw the structures of (i) Co₂(CO)₈ and (ii) ferrocene. Calculate the valence electron count in each of them.
- 15) a) Draw the orbital overlap picture of bonding in transition metal carbonyls.
 - b) Explain how the lanthanide ions differ from transition metal ions in their magnetic properties. (3+3)
- 16) Explain how individual lanthanide ions are separated from one another using ionexchange method.
- 17) Draw the structure of a haem unit. Discuss the mechanism of cooperativity of binding of oxygen to haemoglobin.
- 18) What is Ellingham's diagram? Explain why Metal → Metal oxide lines slope upwards whereas C→ CO line slopes downwards in this diagram.

PART C

Answer any TWO of the following questions.

 $2 \times 5 = 10$

- 19) True or false: "The magnetic moment measurement cannot distinguish between the square planar and tetrahedral complexes of Cu(II)." Give an explanation for your answer based on valence bond theory.
- 20) a) $[Ir(H_2O)_6]^{2+}$ and $[IrF_6]^{3-}$ approximately possess the same 10Dq values. Give reason.
 - b) A complex of composition PtCl₄.5NH₃ has a molar conductance value corresponding to four ions in aqueous solution. Write its correct formula. (3+2)
- 21) Based on the given Latimer diagram answer the following questions:
 - i) Identify two species that undergo disproportionation.
 - ii) Calculate the E^o value for the reduction from MnO₄²⁻ to MnO₂.
 - iii) Write the ionic equation for the reduction of MnO₂ to Mn³⁺.

Latimer diagram for a series of manganese species in acidic solution

End of questions	
	CH6115_B_19