

Register Number:

Date: 07-01-2021

St. Joseph's College (Autonomous), Bangalore M.Sc Mathematics - I Semester

End Semester Examination: January, 2021 MT7218: Real Analysis

Duration: 2.5 Hours	Max.	Marks:	7

- 1. The paper contains three pages.
- Attempt any SEVEN FULL questions.
- 3. All multiple choice questions have one or more correct option. Write all the correct options in your answer booklet.

1.	a)	Let A be an arbitrary set. Show that the cardinality of A is less than the cardinal	lity of its power set
		$\mathcal{P}(A)$, that is $ A < \mathcal{P}(A) $.	[4m]
	b)	Show that $\mathbb{N} \times \mathbb{N}$ is denumerable.	[3m]
	c)	Which of the following are countable?	[3m]
		A. The set of all functions from the set of natural numbers N to 10, 11	

- A. The set of all functions from the set of natural numbers N to $\{0, 1\}$.
- B. The set of all functions from the set $\{0,1\}$ to natural numbers $\mathbb N$.
- C. The set of all finite subsets of \mathbb{N} .
- D. The set of all subsets of \mathbb{N} .
- 2. a) Let (X, d) be a metric space. Show that $d_1: X \times X \to \mathbb{R}$ defined by $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ is also a metric on X. [7m]

b) Let
$$(X,d)$$
 be a metric space. Which of the following is/are also a metric on X ? [3m] A. $\frac{d(x,y)}{1-d(x,y)}$ B. $1-\frac{1}{1+d(x,y)}$ C. $\frac{1}{1-d(x,y)}-1$ D. $d(x,y)\cdot (1-d(x,y))$

- 3. a) Define open sphere and open set in a metric space. Show that in a metric space (X, d) every open sphere is an open set. [4m]
 - b) Prove that a finite union of closed sets is closed.
 c) Let A be a subset of ℝ where A ≠ ∅, ℝ. Which of the following is/are true?

 A. If A is closed then A = (A°).

 B. If A is open then A = (Ā)°.

 C. If A is open then A = ((A°)°)°.

 D. If A is closed then A = ((A°)°)°.
- 4. a) State and prove the converse of the Cantor's intersection theorem. [7m]
 b) Write whether the statements below are true or false. No justification required. [3m]
 A. If F₁ ⊇ F₂ ⊇ · · · are distinct, non-empty subsets of a metric space then ⋂_{i=1}ⁿ F_i ≠ Ø always.
 B. If F₁ ⊇ F₂ ⊇ · · · are distinct, non-empty closed and bounded subsets of a metric space then

 $\bigcap_{i=1}^n F_i$ has a single point.

C. If $F_1 \supseteq F_2 \supseteq \cdots$ are distinct, non-empty closed and bounded subsets of $\mathbb R$ then $\bigcap_{i=1}^n F_i$ has a single point.

5. a) Prove that a monotone function on [a, b] is Riemann integrable.

[5m]

- b) Let $f \in \mathcal{R}[a,b]$ and suppose $f[a,b] \subseteq [c,d]$ and $\phi:[c,d] \to \mathbb{R}$ be a continuous function. Prove that $\phi \circ f \in \mathcal{R}[a,b].$
- c) Pick out the true statement(s):

[3m]

- A. Every bounded function is integrable.
- B. Every integrable function is bounded.
- C. If $\int_a^b f = 0$ then f = 0.
- D. If f is continuous and $\int_a^b f = 0$ then f = 0.
- 6. a) State and prove the second form of the Fundamental Theorem of Calculus

[7m]

b) The value of
$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^nf'\left(\frac{k}{3n}\right)$$
 is A. $3[f(1/3)-f(0)]$

[3m]

A.
$$3[f(1/3) - f(0)]$$

B.
$$f(1/3) - f(0)$$

C.
$$\frac{1}{3}[f'(3) - f'(0)]$$

B.
$$f(1/3) - f(0)$$

D. $\int_0^1 f'\left(\frac{x}{3}\right) dx$

- 7. a) Let f be a Darboux integrable function on [a, b]. Show that f is Riemann integrable on [a, b]. 4m
 - b) Let $f:\mathbb{R}^n \to \mathbb{R}^m$ be a differentiable function at all points $x_0 \in \mathbb{R}^n$. Show that the directional derivative of f exists at x_0 in the direction v for any $v \in \mathbb{R}^n$ and that $D_v f(x_0) = f'(x_0)v$ [4m]
 - c) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be the map f(x,y) = (x+y,x-y). Which of the following is/are true? [2m]
 - A. f is differentiable everywhere.
 - B. f is differentiable only at (0,0)
 - C. f is differentiable at (0,0) and f'(0,0) = f
 - D. f'(x,y) = f for all $(x,y) \in \mathbb{R}^2$
- 8. a) State and prove the mean value theorem for a multivariable differentiable function.

[5m]

[2m]

- b) Compute the partial derivatives and hence the matrix that corresponds to the derivative of the function $f: \mathbb{R}^3 \to \mathbb{R}$ given by f(x, y, z) = xyz at the point (1, 1, 1).
- c) Let $f: \mathbb{R}^n \to \mathbb{R}$ be the map $f(x_1, x_2, \dots, x_n) = a_1x_1 + a_2x_2 + \dots + a_nx_n$ where $a = (a_1, \dots, a_n)$ is a fixed non-zero vector. Let Df(0) denote the derivative of f at 0. Which of the following is/are [3m]
 - A. $[Df(0)](a) = ||a||^2$

B. [Df(0)] is a linear map from \mathbb{R}^n to \mathbb{R} .

C. [Df(0)]a = 0.

- D. For any $b = (b_1, \dots, b_n)$, $[Df(0)](b) = a_1b_1 + \dots + a_nb_n$.
- 9. a) Let (f_n) be a sequence of uniformly continuous functions on [a,b]. Show that if f_n uniformly converges to $f:[a,b]\to\mathbb{R}$ then f is uniformly continuous.
 - b) Show that the sequence $f_n(x) = x \frac{x^n}{x}$ converges uniformly on [0, 1] but that the derivative sequence (f'_n) does not. [5m]
 - c) Which of the following sequences $\{f_n\}$ is uniformly convergent on [0,1]?

B.
$$f_n(x) = 1 - \frac{3}{7}$$

A. $f_n(x) = x^n$ C. $f_n(x) = \frac{x^n}{n}$

B.
$$f_n(x) = 1 - \frac{x}{n}$$

D. $f_n(x) = 1 - x^n$

- 10. a) Let $\sum_{n=1}^{\infty} a_n$ be an absolutely convergent series of real numbers. Show that $\sum_{n=1}^{\infty} \frac{a_n x^n}{1 + x^{2n}}$ is uniformly and absolutely convergent for all $x \in \mathbb{R}$. [5m]
 - b) Show that the series $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ is uniformly convergent on \mathbb{R} . [2m]
 - c) Which of the following is true for the power series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n+1} (2x-1)^n$ A. The series converges on (0,1]B. The series converges on (0,1)[3m]
- C. The radius of convergence is 1 D.The radius of convergence is 1/2

MT7218_A_20