

Register Number:

Date: 9-01-2020

St. Joseph's College (Autonomous), Bangalore M:Sc Mathematics - I Semester

Duration: 2.5 Hours Max. Marks: 70				
Duration: 2.5 Ho	ours			
1. The paper contain	ins four printed pages	5.		
2. Attempt any SE	VEN FULL.question	ıs.		
3. In objective type all the options a	e questions, one or m re correctly marked.	ore options could be corre There is no partial marking	ct. Full marks will be aw g for these questions.	arded only if
a) Let V and W be (i.e., $T(v_1 + v_2)$	e two vector spaces $(v_1) = T(v_1) + T(v_2)$, i	over $\mathbb Q$ and $T:V o W$ bor every $v_1,v_2\in V$) if and	be a function. Prove that \mathbf{d} only if T is linear.	T is additive [7m]
b) The dimension (i) 30	of the vector space of (ii) 15	fall symmetric 6 × 6 matri (iii) 21	ices over a field F is (iv) 42.	[3m]
a) Let $V(F)$ be a finand $\operatorname{rk}(TS) \leq r$	inite dimensional vec $k(S)$. Further, if S is	tor space and $T, S \in End$ invertible, show that $rk(S)$	(V) . Then prove that $\mathrm{rk}(T) = \mathrm{rk}(TS) = \mathrm{rk}(T)$.	$(TS) \le \operatorname{rk}(T)$ [8m]
	linear map on a finit	e dimensional vector space 0. Pick the correct statement	v(F) such that the con	stant term in iven below.
the characteristi		1 - alumamial of T could b	e nonzero.	
the characteristi	nt term in the minim	if polynomial of x could c		
the characteristi (i) The constati (ii) T is onto.		ii porynomiai or z come c		
the characteristi (i) The constate (ii) T is onto. (iii) Nullity(T)	> 0.	ap S such that $TS=ST=$	- 0	
the characteristi (i) The constant	nt term in the minima	ii porynomiai or z come c		

finite dimensional vector space V, prove that 0 is the only eigen value of T. [5m]

b) Prove that the 2×2 matrix $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ is not diagonalizable. [3m]

- c) Let V be the vector space of all infinitely differentiable real valued functions on \mathbb{R} . Let $T = \frac{d^2}{dx^2}$ be the linear map on V. Pick the correct statement(s) from the options given below.
 - (i) The eigen space corresponding to each eigen value is one dimensional.
 - (ii) The eigen space corresponding to each eigen value is two dimensional.

- (iii) Every real number is an eigen value of T.
- (iv) The nullity of T is 2.

[2m]

- 4. a) Let V(F) be a finite dimensional vector space and T ∈ End(V). Let λ be an eigen value of T. Define the algebraic and geometric multiplicities corresponding to λ. Prove that the geometric multiplicity of λ is less than or equal to its algebraic multiplicity. [7m]
 - b) Suppose V(F) is a 5 dimensional vector space and $T \in End(V)$. Pick the correct statement(s) from the options given below.
 - (i) If the characteristic polynomial of T is $(-1)^5(x-2)^3(x-5)^2$, then the minimal polynomial of T has to be $(x-2)^3(x-5)^2$.
 - (ii) If the minimal polynomial of T is $(x-2)^3(x-5)^2$, then T is not diagonalizable.
 - (iii) If the minimal polynomial of T is $(x-2)^3(x-5)^2$, then the geometric multiplicity of both the eigen values is 1.
 - (iv) If the minimal polynomial of T is $(x-2)^3(x-5)^2$, then the characteristic polynomial of T has to be $(-1)^5(x-2)^3(x-5)^2$.

[3m]

5. a) Let T be a linear map on a vector space V(F). Then what do we mean by a T-invariant subspace of

V. If
$$A = \begin{pmatrix} 1 & 2 & 4 \\ 0 & 3 & 5 \\ 0 & 0 & 6 \end{pmatrix}$$
, find an A-invariant subspace of \mathbb{R}^3 . [3m]

- b) Suppose V(F) is a 6 dimensional vector space $T \in End(V)$. Write the Jordan canonical form of T if
 - (i) the minimal polynomial of T is $(x-2)^4(x-5)^2$.
 - (ii) the minimal polynomial of T is $(x-2)^3(x-5)$, the algebraic multiplicity of the eigen value 2 is 4 and that of the eigen value 5 is 2. [5m]
- c) Let V(F) be a finite dimensional vector space and W be a T-invariant subspace of V. Pick the correct statement(s) from the options given below.
 - (i) W is q(T)-invariant, for every $q(x) \in F[x]$.
 - (ii) If \overline{T} is the linear map on the quotient space $\frac{V}{W}$ induced by T, then $\mathrm{rk}(\overline{T}) \leq \mathrm{rk}(T)$.
 - (iii) The minimal polynomial of T always divides the minimal polynomial of \overline{T} .
 - (iv) The minimal polynomial of \overline{T} divides the minimal polynomial of T.

[2m]

- 6. a) Let $V = M_{m \times n}(\mathbb{R})$. Define a function $\langle , \rangle : V \times V \to \mathbb{R}$ by $\langle A, B \rangle = \operatorname{trace}(B^t A)$, where B^t is the transpose of B. Prove that this function is an inner product on V. [8m]
 - b) Let V(F) be an inner product space. Then pick the correct statement(s) from the options given below.
 - (i) $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$, only if either u or v is zero.
 - (ii) $|\langle u, v \rangle| \le ||u|| \cdot ||v||$, for all $u, v \in V$.
 - (iii) $\|\alpha v\| = \overline{\alpha} \|v\|$, for all $\alpha \in F$ and $v \in V$.
 - (iv) $\|\cdot\|$ is a nonnegative real valued function on V always.

[2m]

- 7. a) Consider the basis $\{v_1 = (1, 1, 1), v_2 = (0, 1, 1), v_3 = (0, 0, 1)\}$ of \mathbb{R}^3 . Obtain the corresponding orthonormal basis of \mathbb{R}^3 by means of Gram-Scmidt orthogonalization. [7m]
 - b) Pick the correct statement(s) from the options given below:
 - (i) If $\{v_1, \ldots, v_r\}$ is a linearly independent set in an inner product space V, then there exists an orthonormal set $\{u_1, \ldots, u_r\} \subseteq V$ such that $L\{v_1, \ldots, v_r\} = L\{u_1, \ldots, u_r\}$.
 - (ii) If $\{v_1, \ldots, v_r\}$ is an orthogonal set in an inner product space V, then $\{v_1, \ldots, v_n\}$ is linearly independent.
 - (iii) If $\{v_1, \ldots, v_r\}$ is an orthonormal set in an inner product space V, then $\{v_1, \ldots, v_n\}$ is linearly independent.
 - (iv) If V(F) is a finite dimensional inner product space, then W and W^{\perp} are always of same dimension.

[3m]

8. a) Prove that a symmetric $n \times n$ matrix with real entries is always diagonalizable.

[8m]

- b) Pick the correct statement(s) from the options given below:
 - (i) Any nonzero linear functional is surjective.
 - (ii) Let $V = \mathcal{P}(\mathbb{R})$. Then $\int_0^x (x) dx$ is an example of a linear functional on V.
 - (iii) Let V be an inner product space. Then, for each fixed $u \in V$, the map $T: V \to F$ defined by $T(v) = \langle u, v \rangle$ for all $v \in V$, is always linear, irrespective of the field considered.
 - (iv) Let V be an inner product space. Then, for each fixed $u \in V$, the map $T: V \to F$ defined by $T(v) = \langle v, u \rangle$ for all $v \in V$, is always linear, irrespective of the field considered.

[2m]

- a) Let T be a positive definite linear operator on a finite dimensional inner product space V. Prove that all eigen values of T are positive. Hence deduce that if A is a positive definite matrix, then det(A) is positive.
 - b) Prove that if A is a positive definite matrix then A^{-1} is positive definite.

[4m]

- c) Pick the correct statement(s) from the options given below.
 - (i) The determinant of an orthogonal matrix is ± 1 .
 - (ii) The determinant of a unitary matrix is ± 1 .
 - (iii) If U is an orthogonal or a unitary operator on a finite dimensional inner product space V, then $\|Uv Uw\| = \|v w\|$, for all $v, w \in V$.
 - (iv) An orthogonal matrix can have zero as one of its rows.

[2m]

- 10. a) Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix}$. Then find the singular values of A. If $A = U\Sigma V^t$ is a singular value decomposition of A, then write the matrix Σ corresponding to this A. [3m]
 - b) Define a symmetric bilinear form and a quadratic form on a finite dimensional vector space V(F). Find the symmetric matrix corresponding to the quadratic form

 $g(x, y, z) = 3x^2 + 4xy - y^2 + 8xz - 6yz + z^2$.

[4m]

- 7. a) Consider the basis $\{v_1 = (1, 1, 1), v_2 = (0, 1, 1), v_3 = (0, 0, 1)\}$ of \mathbb{R}^3 . Obtain the corresponding orthonormal basis of \mathbb{R}^3 by means of Gram-Scmidt orthogonalization. [7m]
 - b) Pick the correct statement(s) from the options given below:
 - (i) If $\{v_1, \ldots, v_r\}$ is a linearly independent set in an inner product space V, then there exists an orthonormal set $\{u_1, \ldots, u_r\} \subseteq V$ such that $L\{v_1, \ldots, v_r\} = L\{u_1, \ldots, u_r\}$.
 - (ii) If $\{v_1, \ldots, v_r\}$ is an orthogonal set in an inner product space V, then $\{v_1, \ldots, v_n\}$ is linearly independent.
 - (iii) If $\{v_1, \ldots, v_r\}$ is an orthonormal set in an inner product space V, then $\{v_1, \ldots, v_n\}$ is linearly independent.
 - (iv) If V(F) is a finite dimensional inner product space, then W and W^{\perp} are always of same dimension.

[3m]

8. a) Prove that a symmetric $n \times n$ matrix with real entries is always diagonalizable.

[8m]

- b) Pick the correct statement(s) from the options given below:
 - (i) Any nonzero linear functional is surjective.
 - (ii) Let $V = \mathcal{P}(\mathbb{R})$. Then $\int_0^x (1) dx$ is an example of a linear functional on V.
 - (iii) Let V be an inner product space. Then, for each fixed $u \in V$, the map $T: V \to F$ defined by $T(v) = \langle u, v \rangle$ for all $v \in V$, is always linear, irrespective of the field considered.
 - (iv) Let V be an inner product space. Then, for each fixed $u \in V$, the map $T: V \to F$ defined by $T(v) = \langle v, u \rangle$ for all $v \in V$, is always linear, irrespective of the field considered.

[2m]

- 9. a) Let T be a positive definite linear operator on a finite dimensional inner product space V. Prove that all eigen values of T are positive. Hence deduce that if A is a positive definite matrix, then $\det(A)$ is positive.

 [4m]
 - b) Prove that if A is a positive definite matrix then A^{-1} is positive definite.

[4m]

- c) Pick the correct statement(s) from the options given below.
 - (i) The determinant of an orthogonal matrix is ± 1 .
 - (ii) The determinant of a unitary matrix is ± 1 .
 - (iii) If U is an orthogonal or a unitary operator on a finite dimensional inner product space V, then $\|Uv Uw\| = \|v w\|$, for all $v, w \in V$.
 - (iv) An orthogonal matrix can have zero as one of its rows.

[2m]

- 10. a) Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix}$. Then find the singular values of A. If $A = U\Sigma V^t$ is a singular value decomposition of A, then write the matrix Σ corresponding to this A.
 - b) Define a symmetric bilinear form and a quadratic form on a finite dimensional vector space V(F). Find the symmetric matrix corresponding to the quadratic form

 $q(x, y, z) = 3x^2 + 4xy - y^2 + 8xz - 6yz + z^2$.

[4m]

- c) Pick the correct statement(s) from the options given below.
- (i) If A be an $m \times n$ matrix over \mathbb{R} , then the singular values of A are always ≥ 0 .
- (ii) If A be an $m \times n$ matrix over \mathbb{R} , then A^tA is always positive definite.
- (iii) If A be an $n \times n$ matrix over \mathbb{R} , then the nullity(A) = n (number of nonzero singular values of A).
- (iv) If A be an $n \times n$ matrix over \mathbb{R} , then A is invertible if and only if the number of nonzero singular values of A is equal to n. [3m]