

Register Number: DATE:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

M.Sc. PHYSICS - IV SEMESTER

SEMESTER EXAMINATION: APRIL 2019

PHDE 0417 - ASTROPHYSICS

Time- 2 1/2 hrs. Max Marks-70

This question paper has 3 printed pages and 2 parts

PART A

Answer any **FIVE** full questions.

(5x10=50)

1.

- (a) What are the various systems that make up the solar system? How far away is (are) the farthest object(s) from the Sun?
- (b) What type of a nebula is the Orion Nebula? Is it a planetary nebula? If yes, explain what is a planetary nebula; if not, explain how the Orion Nebula is different from a planetary nebula. (5+5)

2.

(a) The all sky map of certain sources are as shown in Fig. 1:

Based on the figure, what can you say about the location of the sources?

(b) The SDSS archive gives a galaxy spectrum as shown in Fig. 2. The $\,H-\alpha\,$ emission line is observed to be located at $\,7519.69\,$ Å . The lab wavelength of the line is: $\,6562.817\,$ Å . Estimate the distance to the Galaxy. Assume the value of Hubble constant to be $\,70\,$ km s $^{-1}$ Mpc $^{-1}$. (5+5)

- 3. Using a sketch, explain expected rotation curves of galaxies assuming a gravitational source at the center and stars spread out in a disk. What was the result obtained by Vera Rubin and her group with regard to these rotation curves? How does the observational rotation curve vary from the expected one? (4+3+3)
- 4. What is the Hubble law? What type of observations helped Hubble arrive at this law? How did Hubble arrive at the distances to the objects he considered? (2+4+4)
- 5. What are afterglows in Gamma Ray Bursts (GRBs)? What is the importance of studying them? (2+8)
- 6. With a neat ray-diagram work out the Field of View of a telescope.
- 7. In an optically thick medium, the process of radiation propagation is very similar to conduction of electrons in a metal. We can define a mean free path for the photon. Show that for an optically thick medium, the mean optical depth tends to 1.

[Constants: h=6.6x10⁻³⁴ J s (Planck's constant), 1eV = 1.6x10⁻¹⁹ J (electron volt to Joules), c=2.99x10⁸ m/s (speed of light), 1Å = 1x10⁻¹⁰m (Angstrom to meters), e = 1.6x10⁻¹⁹ C (electronic charge), m_{proton}=1.673x10⁻²⁷kg (mass of proton), m_{electron}=9.109x10⁻³¹kg (mass of electron), G=6.674x10⁻¹¹m³kg⁻¹s⁻² (Gravitational constant), M_{\odot}=1.9891x10³⁰ kg (Solar mass), R_{\odot}=6.9x10⁸ m, σ = 5.67x10⁻⁸ W m⁻² K⁻⁴ (Stefan-Boltzmann constant), M_{Earth}=5.97x10²⁷kg (Mass of Earth), D_{earth-sun}=1.49x10¹¹m (Earth-Sun distance), 1 inch = 2.54 cm, 1AU = 1.496x10¹¹ m, 1 ly= 9.461x10¹⁵ m, 1 pc= 3.086x10¹⁶m]

- 8. The center of Milkyway is about $8\,\mathrm{kpc}$ from the solar system. What would be the parallax of a star close to the center of Milkyway as seen from Earth?
- 9. In the paper by Vera Rubin (1972), it was observed that M31 (Andromeda Galaxy) had a rotational velocity of $275~{\rm km~s}^{-1}$ at about $1~{\rm kpc}$. Assuming Kepler rotation rate at that point, what would the mass of the central object be?
- 10. Given that the solar constant on Earth is $1.361\,kW\,m^{-2}$ and the distance of Jupiter from sun is $5.2\,AU$, what is the solar constant as measured on Jupiter?
- 11. Microsecond variabilities are seen in GRBs. Assuming the sources of GRBs to be at distances of a few Gpc, what can you say about the size of the region of emission?
- 12. Shown in Fig. 3 is the view through a telescope. Assume that the object seen is the full moon against the night sky. Compute the Field of View of the telescope. If the exit pupil is measured as 4 cm , what is the focal length of the objective?

13. From basic parameters (like its mass and radius), estimate the dynamical timescale for the Sun.