Register Number:
DATE:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

M.Sc. PHYSICS - IV SEMESTER

SEMESTER EXAMINATION: APRIL 2019

PHDE 0417 - ASTROPHYSICS

Time- 2 1/2 hrs.
Max Marks-70

This question paper has 3 printed pages and 2 parts
PART A

Answer any FIVE full questions.

1.

(a) What are the various systems that make up the solar system? How far away is (are) the farthest object(s) from the Sun?
(b) What type of a nebula is the Orion Nebula? Is it a planetary nebula? If yes, explain what is a planetary nebula; if not, explain how the Orion Nebula is different from a planetary nebula.
2.
(a) The all sky map of certain sources are as shown in Fig. 1:

Fig. 1: All sky map of EGRET sources

Based on the figure, what can you say about the location of the sources?
(b) The SDSS archive gives a galaxy spectrum as shown in Fig. 2. The $\mathrm{H}-\alpha$ emission line is observed to be located at $7519.69 \AA$. The lab wavelength of the line is: $6562.817 \AA$. Estimate the distance to the Galaxy. Assume the value of Hubble constant to be $70 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$.

Fig. 2: Galaxy Spectrum
3. Using a sketch, explain expected rotation curves of galaxies assuming a gravitational source at the center and stars spread out in a disk. What was the result obtained by Vera Rubin and her group with regard to these rotation curves? How does the observational rotation curve vary from the expected one?
(4+3+3)
4. What is the Hubble law? What type of observations helped Hubble arrive at this law? How did Hubble arrive at the distances to the objects he considered?
5. What are afterglows in Gamma Ray Bursts (GRBs)? What is the importance of studying them?
(2+8)
6. With a neat ray-diagram work out the Field of View of a telescope.
7. In an optically thick medium, the process of radiation propagation is very similar to conduction of electrons in a metal. We can define a mean free path for the photon. Show that for an optically thick medium, the mean optical depth tends to 1 .

PART B

Answer any FOUR full questions.

[Constants: $\mathrm{h}=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}$ (Planck's constant), $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$ (electron volt to Joules), $\mathrm{c}=2.99 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (speed of light), $1 \AA=1 \times 10^{-10} \mathrm{~m}$ (Angstrom to meters), $\quad \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$ (electronic charge), $\quad m_{\text {proton }}=1.673 \times 10^{-27} \mathrm{~kg}$ (mass of proton), $\quad m_{\text {electron }}=9.109 \times 10^{-31} \mathrm{~kg}$ (mass of electron), $\quad \mathrm{G}=6.674 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$ (Gravitational constant), $\quad \mathrm{M}_{\odot}=1.9891 \times 10^{30} \mathrm{~kg}$ (Solar mass), $\quad R_{\circ}=6.9 \times 10^{8} \mathrm{~m}, \quad \sigma=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$ (Stefan-Boltzmann constant), $\mathrm{M}_{\text {Earth }}=5.97 \times 10^{27} \mathrm{~kg}$ (Mass of Earth), $\quad \mathrm{D}_{\text {earth-sun }}=1.49 \times 10^{11} \mathrm{~m}$ (Earth-Sun distance), 1 inch = $2.54 \mathrm{~cm}, 1 \mathrm{AU}=1.496 \times 10^{11} \mathrm{~m}, 1 \mathrm{ly}=9.461 \times 10^{15} \mathrm{~m}, 1 \mathrm{pc}=3.086 \times 10^{16} \mathrm{~m}$]
8. The center of Milkyway is about 8 kpc from the solar system. What would be the parallax of a star close to the center of Milkyway as seen from Earth?
9. In the paper by Vera Rubin (1972), it was observed that M31 (Andromeda Galaxy) had a rotational velocity of $275 \mathrm{~km} \mathrm{~s}^{-1}$ at about 1 kpc . Assuming Kepler rotation rate at that point, what would the mass of the central object be?
10. Given that the solar constant on Earth is $1.361 \mathrm{~kW} \mathrm{~m}^{-2}$ and the distance of Jupiter from sun is 5.2 AU , what is the solar constant as measured on Jupiter?
11. Microsecond variabilities are seen in GRBs. Assuming the sources of GRBs to be at distances of a few Gpc , what can you say about the size of the region of emission?
12. Shown in Fig. 3 is the view through a telescope. Assume that the object seen is the full moon against the night sky. Compute the Field of View of the telescope. If the exit pupil is measured as 4 cm , what is the focal length of the objective?

Fig. 3: View through a telescope
13. From basic parameters (like its mass and radius), estimate the dynamical timescale for the Sun.

