St. Joseph's College (Autonomous) Bangalore VI Semester Examination April-2019
 B.Sc Mathematics
 MT 6115 - Mathematics VII

Time: $2 \frac{1}{2} \mathrm{hrs}$.
Marks: 70
This question paper has Three parts and One printed page.
I Answer any five questions:

1. For which value of k will the vector $(1,-2, k)$ in R^{3} be a linear combination of the vectors $(3,0,-2)$ and $(2,-1,-5)$.
2. Find the basis of the subspace spanned by the vectors $(2,4,2),(1,-1,0),(1,2,1),(0,3,1)$.
3. Find the linear transformation $f: R^{2} \rightarrow R^{2}$ such that $f(1,1)=(0,1)$ and $f(-1,1)=(3,2)$.
4. Find the expression for elementary arc-length and volume element for Cartesian coordinates.
5. Show that the scalar factors for cylindrical polar coordinates are $1, \rho, 1$.
6. Form a partial differential equation by eliminating the arbitrary function f from the equation $z=f\left(x^{2}+y^{2}\right)$.
7. Solve $(p+q)(z-x p-y q)=1$
8. Solve $(y-z) p+(z-x) q=x-y$

II Answer any three questions:

(3x6=18)
9. Show that the union of two subspaces of a vector space V over a field F is a subspace if and only if one is contained in the other.
10. Given the matrix $A=\left(\begin{array}{ccc}1 & -1 & 2 \\ 3 & 1 & 0\end{array}\right)$ determine the linear transformation $T: V_{3}(R) \rightarrow V_{2}(R)$ relative to bases $B_{1}=\{(1,1,1),(1,2,3),(1,0,0)\} ; \quad B_{2}=\{(1,1),(1,-1)\}$
11. If T is a linear transformation from $V_{3}(R)$ into $V_{4}(R)$ defined by $T(1,0,0)=(0,1,0,2), \quad T(0,1,0)=(0,1,1,0), \quad T(0,0,1)=(0,1,-1,4)$
Find the range, null space, rank and nullity of T.
12. Show that every vector space V over the real field R of dimension n is isomorphic to $V_{n}(R)$.

III Answer any seven questions:
(7x6=42)
13. Show that the spherical coordinate system is an orthogonal curvilinear coordinate system.
14. Derive the unit vectors $e_{\rho}, e_{\varphi}, e_{z}$ in terms of i, j, k hence find i, j, k in terms of $e_{\rho}, e_{\varphi}, e_{z}$.
15. Express the vector $f=z i-2 x j+y k$ in terms of cylindrical coordinates.
16. Verify the condition for integrability and solve $\left(2 x^{2}+2 x y+2 x z^{2}+1\right) d x+d y+2 z d z=0$
17. Solve $x^{2} p^{2}+y^{2} q^{2}=z^{2}$ using the transformation $\log x=u, \log y=v, \log z=w$
18. Solve $p(1+q)=z q$
19. Find the complete integral of $\left(p^{2}+q^{2}\right) y=q z$ by Charpit's method.
20. Solve $2 r-s-3 t=e^{x-y}$
21. Derive the Fourier series solution of the one dimensional heat equation.

