ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

 B.Sc. MATHEMATICS - VI SEMESTER

 B.Sc. MATHEMATICS - VI SEMESTER
 SEMESTER EXAMINATION: APRIL 2019
 MT 6215 -MATHEMATICS

Time: $\mathbf{2 ~}_{1 / 2}$ hrs
Max Marks: 70
This paper contains THREE printed pages and THREE parts.

I Answer any FIVE of the following.

1. Evaluate $: \lim _{\substack{i \pi \\ z \rightarrow e^{\frac{2}{2}}}} \frac{z^{10}+1}{z^{8}-1}$.
2. Verify Cauchy-Riemann equations for the function $f(z)=e^{i z}$.
3. Find the fixed points of the bilinear transformation $w=\frac{2(z+i)}{z+2 i}$.
4. Evaluate $\int_{0}^{2+i}(\overline{\mathrm{z}})^{2} \mathrm{dz}$ along the line $2 y=x$.
5. Evaluate $\int_{C} \frac{\cos z}{z^{2}+2 z+2} d z$, where C is the circle $|z|=1$.
6. Find $L\left[t 5^{t}+t^{5}\right]$.
7. Find the inverse Laplace transform of $\frac{s-1}{(s+1)^{2}}$.
8. If $L[f(t)]=F(s)$, then prove that $L[t f(t)]=-F(s)$.
9. (a) Show that $\arg \left(\frac{z-1+i}{z+i}\right)=\frac{\pi}{4}$ represents a circle.
(b) Show that $f(z)=\left\{\begin{array}{ll}\frac{x y^{2}(x+i y)}{x^{2}+y^{4}}, & \text { when } z \neq 0 \\ 0, & \text { when } z=0\end{array}\right.$ is not differentiable at $z=0$.
10. State and prove the sufficient conditions for a function $f(z)=u+i v$ to be analytic in a domain D .
11. Find the analytic function $f(z)=u+i v$, if $u-v=\frac{\sin x+\cos x-e^{-y}}{2(\cos x-\cosh y)}$.
12. Show that $e^{-x}(x \cos y+y \cos x)$ is harmonic and find it's harmonic conjugate.
13. (a) If $f(z)=u(x, y)+i v(x, y)$ is an analytic function, then show that the curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ cut orthogonally.
(b) If $f(z)$ is an analytic function, show that $\left(\frac{\partial|f(z)|}{\partial x}\right)^{2}+\left(\frac{\partial|f(z)|}{\partial y}\right)^{2}=\left|f^{\prime}(z)\right|^{2}$.
14. Show that $\int_{C} \frac{e^{t z}}{\left(z^{2}+1\right)(z+\sqrt{3})} d z=i \pi \sin \left(t-\frac{\pi}{6}\right)$, where $t>0$ and C is the circle $|z|=\sqrt{2}$.
15. State and prove Cauchy's inequality for a function $f(z)$ of a complex variable z.
16. (a) Discuss the transformation inversion $w=\frac{A}{z}$, where A is a non-zero real constant.
(b) Show that the transfomation $w=\frac{1}{z}$ transforms a circle into a circle or a straight line. [4]
17. Define "Bilinear transformation". Find the bilinear transformation $w=f(z)$ which maps $\{-1,1, \infty\}$ in the z-plane onto $\{-i,-1, i\}$ in the W-plane.

III Answer any THREE of the following.
18. Solve by Gauss-Seidel method:

$$
\begin{aligned}
& x-10 y+z+16=0 \\
& 2 x+y+5 z=13 \\
& 10 x+y-z=31
\end{aligned}
$$

19. Use modified Euler's method to compute y for $x=0.05$ and 0.1 given that

$$
\frac{d y}{d x}=x+y, \text { with the initial condition } x_{0}=0, y_{0}=1
$$

20. If $f(t)=\left\{\begin{array}{r}1,0<t<\frac{a}{2} \\ -1, \frac{a}{2}<t<a\end{array}\right.$ is a square wave function of period ' a ', show that $L[f(t)]=\frac{1}{s} \tanh \left(\frac{a s}{4}\right)$.
21. Using convolution theorem find $L^{-1}\left[\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right]$.
