

Register Number:

DATE: 13-01-2020

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

M.Sc. PHYSICS - I SEMESTER

SEMESTER EXAMINATION- JANUARY 2021

PH 7520 - ANALYTICAL TOOLS FOR MATHEMATICAL PHYSICS

Time-1 hrs.

Maximum Marks-30

This question paper has 2 printed pages and 1 part

<u>PART A</u> Answer any <u>THREE</u> full questions

1. Consider the following vectors
$$|v\rangle = \begin{pmatrix} 1\\2\\5 \end{pmatrix}$$
 and $|u\rangle = \begin{pmatrix} 3\\0\\-3 \end{pmatrix}$

- a) Compute ||v|| and ||u||
- b) Compute the inner product of the vectors
- c) What is the angle between these vectors?
- d) Consider a vector $|w\rangle = \begin{pmatrix} 1 \\ x \\ y \end{pmatrix}$. Compute the values of x and y such that all 3 vectors

 $(|v\rangle; |u\rangle$ and $|w\rangle)$ are mutually perpendicular

(2,2,2,4)

- 2. A mobius strip is defined by the function $\log(r)\sin(\theta) = z\cos(\theta)$
 - a) Which coordinate frame is the mobius strip defined in?
 - b) If the transformation from Cartesian to cylindrical coordinates are given by

$$x = r\sin\theta$$
$$y = r\cos\theta$$
$$z = z$$

rewrite the ∇ operator in cylindrical coordinates

c) Compute the normals to this surface

3.

- $|a\rangle = \begin{pmatrix} 1\\2\\3 \end{pmatrix}$, $|b\rangle = \begin{pmatrix} 3\\1\\7 \end{pmatrix}$ and $|c\rangle = \begin{pmatrix} 5\\5\\13 \end{pmatrix}$ linearly independent? Show it by row reduction
- b) Orthogonalise $|v\rangle = \begin{pmatrix} 1\\0\\3 \end{pmatrix}$, $|b\rangle = \begin{pmatrix} 3\\1\\7 \end{pmatrix}$ and $|w\rangle = \begin{pmatrix} 2\\1\\3 \end{pmatrix}$ using the Gram Schmidt process (5,5)
- 4. Consider the vector $|p\rangle = \begin{pmatrix} 4 \\ 6 \\ 1 \end{pmatrix}$
 - a) Decompose the vector into its basis space components. [$|u\rangle=a_iB_i$ where $a_i\in\mathbb{R}$ is the i^{th} component and B_i is the i^{th} basis vector]
 - b) Write the transformation matrix for a rotation by $\theta=30^{\circ}$ about the x-axis. [x-axis is kept fixed and serves as the axis of rotation]
 - c) How will $|p\rangle$ look if it undergoes the transformation as defined by the matrix computed from above

(3,2,5)