Register Number:

Date:

St. Joseph's College (Autonomous), Bangalore
B.Sc Mathematics-IV Semester
Semester Examination: April, 2019
MT-415: Mathematics-IV

Time: $1 \frac{1}{2}$ Hours
Max. Marks: 35
The paper contains one page

ANSWER ANY SEVEN OF THE FOLLOWING QUESTIONS

$7 * 5=35$

1. If N is a normal subgroup of G and H is a subgroup of G , then prove that NH is a subgroup of G .
2. If N is a normal subgroup of G and a is an element of finite order in G , then show that the element Na of the quotient group $\mathrm{G} \mid \mathrm{N}$ is also of finite order and order of Na divides the order of a.
3. If $f: G \rightarrow G$ be a homomorphism from the group G into itself and H is a cyclic subgroup of G, then show that $f(H)$ is again cyclic subgroup of G.
4. If $f: G \rightarrow G^{\prime}$ be an isomorphism of a group G onto a group G^{\prime} and a is any element of G, then prove that the order of $f(a)$ equals the order of a.
5. Find the fourier expansion of the function $f(x)=\left\{\begin{array}{rc}-1 & -3<x<0 \\ 0 & x=0 \\ 1 & 0<x<3\end{array}\right.$
6. Obtain the fourier series of $f(x)=\left\{\begin{array}{rr}x & -\frac{\pi}{2} \leqslant x \leqslant \frac{\pi}{2} \\ \pi-x & \frac{\pi}{2} \leqslant x \leqslant \frac{3 \pi}{2}\end{array}\right.$
7. Find the fourier cosine series for $f(x)=x, 0 \leqslant x \leqslant L$.
8. Find the Taylor polynomial of $f(x, y)=\log (1+x+y)$ at $x=0, y=0$.
9. Show that a rectangular box of maximum volume with prescribed surface area is a cube.
10. Find the three numbers x, y, z such that $x+y+z=1$ and $x y+y z+z x$ is maximum.
