

Register Number:

Date: 07-01-2021

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE - 27

M.Sc. STATISTICS – I SEMESTER SEMESTER EXAMINATION – DECEMBER 2020

STA 7220: Statistical Inference - I

Time: 21/2hrs

Max:70 Marks

This question paper has TWO printed pages and TWO sections

SECTION - A

I Answer any SIX of the following:

6x 3 = 18

- 1. Define statistic and parameter. Give an example for each.
- 2. State the conditions that need to be satisfied for a distribution to belong to Cramer family, with an example.
- 3. Let $X_1, X_2, ..., X_n$ be a random sample from Bernoulli distribution with parameter p. Examine whether statistic $T = \sum_{i=1}^{n} X_i$ is a complete statistic for p or not?
- 4. Obtain the sufficient statistic for the parameter of Poisson distribution.
- 5. Show that convex combination of two unbiased estimators is unbiased. Demonstrate this with an example.
- 6. What is ancillary statistic? Illustrate with an example.
- State Rao-Blackwell theorem and explain its utility.
- 8. Find the Fisher information function contained in a random sample of size n for the distribution with pdf $f(x, \theta) = \theta x^{\theta-1}$, $0 < \theta < 1$.
- 9. Explain the method of moments for estimating the parameters. Give an example where this method fails.

SECTION - B

II Answer any FOUR of the following:

 $4 \times 13 = 52$

- 10. A) Examine whether U (0, θ) is a member of
 - (i) one parameter exponential family
 - (ii) pitman family

(7)

B) Define k-parameter exponential family. Show that gamma distribution belongs to two-parameter exponential family. (6)

11.	A) State and prove Fisher-Neyman factorization theorem	(7)
	B) Let $X_1, X_2,, X_n$ be a random sample from shifted exponential with so	ale and
	location parameters λ and θ respectively. Find the minimal sufficient sta	tistic for
	(λ, θ) .	(6)
12.	A) Let $X_1, X_2,, X_n$ be a random sample from exponential with mean θ examine	
	whether \bar{x} is UMVUE for θ or not	(7)
	B) State and prove Lehmann-Scheffe theorems	(6)
13.	A) State and prove Cramer-Rao lower bound inequality.	(6)
	B) Prove that $\left(\sum_{i=1}^n x_i, \sum_{i=1}^n {x_i}^2\right)$ is jointly sufficient for (μ, σ^2) for normal distribution	
		(7)
14.	A) Prove that $X_1 + X_2$ is sufficient for the parameter of Poisson distribution. Examine	
	whether $X_1 + 2X_2$ is also sufficient.	(6)
	B) Explain the procedure for obtaining maximum likelihood estimator. Find the MLE	
	of the parameter of geometric distribution.	(7)
15.	. A) Find the moment estimators of the parameters of beta distribution of first k	ind with
	shape parameters α and β .	(7)
	B) State and prove invariance property of maximum likelihood estimator.	(6)
		` '