ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 B.Sc MATHEMATICS-II SEMESTER
 END SEMESTER EXAMINATION: APRIL 2019 MT218: MATHEMATICS

Time: 2.5 Hours

Max. Marks: 70
The paper contains Two pages and Four parts .
I. ANSWER ANY FIVE OF THE FOLLOWING. $\quad(5 \times 2=10)$

1. Define a group.
2. Show that the identity element of a group is unique.
3. Draw the Cayley's table for the set $\{5,15,25,35\}$ under multiplication modulo 40 . Find the identity element.
4. Find the truth set of the open sentence $p(x):|x-1| \leq 2$ where $\mathrm{R}[\mathrm{p}(\mathrm{x})]=\mathbb{N}$, the set of natural numbers.
5. Find $\frac{d s}{d x}$ and $\frac{d s}{d y}$ for the curve $y=a \cosh \left(\frac{x}{a}\right)$.
6. Find the asymptotes parallel to the coordinate axes for the curve $\frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=1$.
7. Find the area bounded by the curve $a^{2} y=x^{2}(x+a)$ and the x-axis.
8. By grouping the terms of the equation solve $y d x-x d y+2 x y^{2} d x-2 y^{3} d y=0$.
II. ANSWER ANY TWO OF THE FOLLOWING.
$(2 \times 6=12)$
9. Show that the set $\left\{\left(\begin{array}{ll}a & a \\ a & a\end{array}\right): a \in \mathbb{R}, a \neq 0\right\}$ is a group with respect to matrix multiplication.
10. (a) Prove that the intersction of any two subgroups of a group G is also a subgroup.
(b) Let G be an abelian group. Prove that $H=\left\{x^{2}: x \in G\right\}$ is a subgroup of G .
11. If $p(x)$ and $q(x)$ are two open sentences with same replacement set then show that
(a) $T[p(x) \wedge q(x)]=T[p(x)] \cap T[q(x)]$
(b) $T[p(x) \vee q(x)]=T[p(x)] \cup T[q(x)]$

III. ANSWER ANY FIVE OF THE FOLLOWING.

12. (a) Prove that $\tan \phi=r \frac{d \theta}{d r}$ for the polar curve $r=f(\theta)$.
(b) Find the angle between the radius vector and the tangent vector for the curve

$$
\begin{equation*}
r=a(1+\sin \theta) \text { at } \theta=\frac{\pi}{6} . \tag{2}
\end{equation*}
$$

13. Show that the pedal equation of the curve $x=a \cos ^{3} t$ and $y=a \sin ^{3} t$ is $r^{2}=a^{2}-3 p^{2}$.
14. Show that the radius of curvature of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $\rho=\frac{a^{2} b^{2}}{p^{3}}$.
15. Find all the asymptotes of the curve $4 x^{2}(y-x)+y(y-2)(x-y)=4 x+4 y-7$.
16. Find the position and nature of the double points of the curve $x^{3}-y^{2}-7 x^{2}+4 y+15 x-13=0$.
17. Find the length of an arc of the cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$.
18. Find the volume of the solid obtained by revolving the cardioid $r=a(1+\cos \theta)$ about the initial line.
IV. ANSWER ANY THREE OF THE FOLLOWING. $\quad(3 \times 6=18)$
19. Solve $x \frac{d y}{d x}+y \log y=x y e^{x}$.
20. Find the suitable integrating factor and solve $\left(3 x^{2} y^{4}+2 x y\right) d x+\left(2 x^{3} y^{3}-x^{2}\right) d y=0$.
21. Find the general and singular solution of $(p-1) e^{3 x}+p^{3} e^{2 y}=0$ using the substitution $u=e^{x}$ and $v=e^{y}$.
22. Find the orthogonal trajectory of the family of circles through the origin and having the centres on the x -axis.
