ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 B.Sc. MATHEMATICS - II SEMESTER
 SEMESTER EXAMINATION: APRIL 2019
 MT 218 MATHEMATICS

Time: $\mathbf{2 ~ 1}^{1 / 2}$ hrs
Max Marks: 70

This paper contains THREE printed pages and FOUR parts.
I Answer any FIVE of the following.
$5 \times 2=10$

1. In the group $(\mathbb{Z}, *)$ of integers, where $a * b=a+b-1, \forall a, b \in \mathbb{Z}$, find the identity element and 2^{-1}.
2. In a group G, if $(a b)^{2}=a^{2} b^{2}, \forall a, b \in G$, then prove that G is abelian.
3. If $f=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right)$ and $g=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right)$ be two elements of the symmetric group S_{3} of three symbols $\{1,2,3\}$, find $g f g^{-1}$.
4. Negate: $(\forall x)[\sim p(x) \Rightarrow q(x)]$.
5. Find the angle between the radius vector and the tangent to the curve $r=a(1+\sin \theta)$ at any point (r, θ) on the curve.
6. Show that the polar sub tangent to the curve $r=3 \sec 3 \theta$ at any point on it, is $\operatorname{cosec} 3 \theta$.
7. Find the volume of the solid generated by revolving the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about the x-axis.
8. Find the integrating factor of the linear differential equation $\left(1+y^{2}\right) d x=\left(\tan ^{-1} y-y\right) d y$.
9. Prove that the set of matrices $M=\left\{\left[\begin{array}{ll}x & x \\ x & x\end{array}\right]: x \in \mathbb{R}\right.$ and $\left.x \neq 0\right\}$ forms an abelian group under multiplication of matrices.
10. (a) Prove that a non-empty sub set H of a group G is a sub group of G if and only if

$$
\begin{equation*}
a b^{-1} \in H, \forall a, b \in H . \tag{4}
\end{equation*}
$$

(b) Show that $S L_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a d-b c=1\right\} \subseteq G L_{2}(\mathbb{R})$, is a sub group of the group $\left(G L_{2}(\mathbb{R}), \cdot\right)$, the group of 2×2 non-singular real matrices under multiplication.
11. If $p(x)$ and $q(x)$ are open sentences with the same replacement set, then prove that $T[p(x) \Rightarrow q(x)]=\{T[p(x)]\}^{\prime} \cup T[q(x)]$.

III Answer any FIVE of the following.
12. With usual notations, for a curve $y=f(x)$, prove that $\frac{d s}{d x}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$. Hence deduce that $\frac{d x}{d s}=\cos \psi$ and $\frac{d y}{d s}=\sin \psi$.
13. Show that the pedal equation of the parabola $y^{2}=4 a(x+a)$ is $p^{2}=a r$. Also show that the radius of curvature ρ at any point on the curve is proportional to p^{3}.
14. (a) Find the angle of intersection of the curves $r=\sin \theta+\cos \theta$ and $r=2 \sin \theta$.
(b) Find the nature of the double point $(3,2)$ on the curve $x^{3}-7 x^{2}-y^{2}+15 x+4 y-13=0$.
15. Find all the asymptotes to the curve $x^{3}+x^{2} y-x y^{2}-y^{3}+x^{2}-y^{2}-2=0$.
16. Trace the curve Lemniscates of Bernoulli $r^{2}=a^{2} \cos 2 \theta$.
17. (a) Find the area of one loop of the three leaved rose $r=a \sin (3 \theta)$.
(b) Find the perimeter of the Cardioid $r=a(1-\cos \theta)$.
18. Find the surface area of the solid generated by revolving the astroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ about the x-axis.

IV Answer any THREE of the following.
$3 \times 6=18$
19. Solve : $x^{2} \frac{d y}{d x}+x y=y^{2} \log _{e} x$
20. Solve by finding a suitable integrating factor: $y(4 x+y) d x-2\left(x^{2}-y\right) d y=0$.
21. Find the general and the singular solutions of $x^{2}(y-p x)=y p^{2}$ by using the substitutions

$$
x^{2}=u \text { and } y^{2}=v
$$

22. Find the orthogonal trajectory of the family of conics $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}+\lambda}=1$, where λ is a parameter.
