

Register Number:

Date: 21-11-2020

ST. JOSEPH'S COLLEGE - AUTONOMOUS, BENGALURU-27 END SEMESTER EXAMINATION; NOVEMBER-2020

M. Sc. Chemistry - III Semester

CH-9318 ELECTROCHEMISTRY AND ELECTROANALYTICAL TECHNIQUES

Time: 2½ Hours

Note: This question paper has THREE parts and SEVENTEEN questions.

Part A

Answer any SIX of the following questions:

 $[2 \times 6 = 12]$

Max. Marks: 70

- 1) What is an ideal polarized and an ideal non-polarized electrode?
- 2) Why is a three-electrode system used in voltammetry? Explain.
- 3) What is meant by the 'electrochemical window' of an electrode?
- 4) Distinguish between NPV and DPV techniques.
- 5) Discuss two essential properties of an ion-selective electrode.
- 6) What are electrocapillary curves? Explain
- 7) What is the polarization of an electrode? How is it quantified?
- 8) Explain the concept of 'triple ions' in solutions.

Part-B

Answer any FOUR of the following questions:

 $[12 \times 4 = 48]$

- 9) (a) Starting from Ficks' first law of diffusion, how do you arrive at Ilkovic's equation for average current at DME.
- (b) Plot the potential excitation signal and response signal in the following methods: i) LSV
- ii) staircase voltammetry
- (c) Explain anodic stripping voltammetry.

(6+3+3)

- 10) (a) Describe the construction of the LaF₃ electrode and explain the mechanism of potential development and how it can be used to measure fluoride ion concentrations.
 - (b) Write any three characteristics of capillary electrophoresis.
 - (c) With relevant equations discuss electrical conductance across the glass membrane electrode (6+3+3)
- 11) (a) How do you apply the amperometric technique to determine the unknown concentration of the solute if the solute is Ba⁺² and the reagent is a sulphate?
 - (b) With the help of a neat diagram, describe how a gas sensing probe could be used for the determination of CO₂ in a sample.

- (c) Explain the Helmholtz-Perin model with relevant expressions.
- 12) (a) Obtain an expression for the potential of a dilute electrolyte.
 - (b) Obtain an expression for the mean ionic activity in the case of the following electrolytes:
 - (i) Na₂SO₄ and (ii) AlCl₃.

(8+4)

- 13) (a) Explain the variation of hyperbolic sine function at i) high overvoltage and ii) low overvoltage based on current density against overvoltage plot and with the help of the required expressions.
 - (b) What is bubble overvoltage? Discuss two factors affecting hydrogen overvoltage.
 - (c) What is specific adsorption? Explain.
 - (d) Explain the concept of surface excess. Derive an expression for it in terms of no of moles of species. (3+3+3+3)
- 14)(a) Discuss electrodics by deriving the Butler-Volmer equation.
 - (b) The following data were obtained from linear scan voltammetry of a reversible reduction reaction.

E Vs. SCE	ΙμΑ
-0.358	0.37
-0.372	0.95
-0.382	1.71
-0.400	3.48
-0.410	4.20
-0.435	4.97

The limiting current was 5.15 μ A. Show that the reduction reaction is reversible and determine the value of n and E_{$\frac{1}{2}$}. (7+5)

Part-C

Answer any TWO of the following questions:

 $[5 \times 2 = 10]$

- 15) The solutions of each of the following species are given separately for investigation by linear sweep voltammetric method. Sydnone (-1.15V) Nitrostyrene (-0.62 V), Ni⁺² (-0.25 V), Cr⁺³ (-0.41 V) and Fe⁺³ (+0.77 V). The values within parenthesis are their respective reduction potentials vs SCE. You are provided with the following electrodes to carry out appropriate electrochemical redox reactions—Mercury, gold, glassy carbon and platinum.
 - i) Explain which one of these electrodes is suitable to investigate all the species mentioned above?
 - ii) If the electrode's energy is increased, which one of them will undergo reduction first? Explain.

- iii) If iron complexes to form ferricyanide ion, in which direction the potential of iron will shift on reduction? Give appropriate justification for your answer.
- 16) The following pair of electrolytes are given for analysis. a) 0.003 M BaCl₂ and 0.008 M CaCl₂; which one of these will have a higher ionic strength? b) 0.003 M BaCl₂ and 0.003 M FeCl₃; Which one of these has a higher mean activity coefficient. Justify your claim with relevant calculations.
- 17) a) Benzyl alcohol was present along with other cationic and anionic moieties in a mixture to be separated by capillary electrophoresis. Explain the effect on the migration of this molecule on i) increasing the pH of the electrolyte ii) decreasing the voltage.
 - b) Calculate the effective resistance across 1cm² of the following electrodes and identify the polarizable electrode:
 - (i) Pt, H₂, H⁺; $i_0 = 0.85 \text{ mA cm}^{-2} \text{ and (ii) Hg, H₂, H⁺; } i_0 = 0.75 \times 10^{-12} \text{A cm}^{-2}$ (2+3)