

Register Number:

DATE:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 B.Sc. MATHEMATICS – VI SEMESTER SEMESTER EXAMINATION: APRIL 2018 <u>MT 6115 : MATHEMATICS - VII</u>

Time- 2 1/2 hrs

Max Marks-70

5 X 2 =10

This question paper has three parts two printed pages.

I. Answer any five from the following

- 1. Verify the condition for integrability for $(y^2 + z^2 x^2)dx 2xydy 2xzdz = 0$
- 2. Form the partial differential equation by eliminating arbitrary constants *a* and *b* from $z = (x^2 + a) (y^2 + b)$.
- 3. Solve p + q = sinx + siny
- 4. Find the general solution of $(D D')^2 z = e^{x+y}$.
- 5. Is the subset $W = \{(x_1, x_2, x_3) / x_1^2 + x_2^2 + x_3^2 \le 0\}$ of the vector space $V_3(R)$ is a subspace of $V_3(R)$? Justify.
- In a *n* dimensional vector space V(F), prove that any n + 1 elements of Vare linearly dependent.
- 7. Find the matrix of the linear transformation $T: V_3(R) \rightarrow V_2(R)$ defined by T(x, y, z) = (x + y, y + z) relative to the standard bases of $V_3(R)$ and $V_2(R)$.
- 8. Find the scalar factors h_1 , h_2 , h_3 for cylindrical polar coordinates.

II. Answer any seven from the following

7 X 6 =42

- 9. Solve $z^2 dx + (z^2 2yz)dy + (2y^2 yz zx)dz = 0$.
- 10. Solve $z(x + y)p + z(x y)q = x^2 + y^2$.
- 11. Solve $x^2p^2 + y^2q^2 = z^2$ using the transformation u = logx, v = logy, w = logz
- 12. Solve p(1+q) = zq.
- 13. Find a complete integral of $2xz px^2 2qxy + pq = 0$ using Charpit's method.
- 14. Find the general solution of $(D^2 2DD' + {D'}^2)z = 12xy$.

15. Derive the Fourier series solution of one dimensional heat equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$

16. Derive the arc element and volume element for spherical coordinates.

17. Derive e_{ρ} , e_{φ} , e_z in terms of i, j, k and then find i, j, k in terms of e_{ρ} , e_{φ} , e_z .

III. Answer any three from the following

- 18 Prove that the union of any two subspaces of a vector space *V* over a field *F* is a subspace if and only if one is contained in the other.
- 19 Prove that if S is a nonempty subset of a vector space V(F) then
 - (i) L(S) is a subspace of V.
 - (ii) L(S) is the smallest subspace of V containing S.

20 Given the matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -1 & 3 \end{bmatrix}$ find the linear transformation $T: V_2(R) \rightarrow V_3(R)$

relative to the bases $B_1 = \{(1,1), (-1,1)\}$ and $B_2 = \{(1,1,1), (1,-1,1), (0,0,1)\}$

21 If *T* is a linear transformation from $V_3(R)$ *into* $V_4(R)$ defined by T(1,0,0) = (0,1,0,2), T(0,1,0,) = (0,1,1,0), T(0,0,1) = (0,1,-1,4). Find the range space, null space, rank and nullity of *T*.

3 X 6=18