ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

B.Sc. MATHEMATICS - VI SEMESTER

SEMESTER EXAMINATION: APRIL 2018

MT 6115 : MATHEMATICS - VII

Time- $\mathbf{2 ~} 1 / 2 \mathrm{hrs}^{\text {h }}$

Max Marks-70

This question paper has three parts two printed pages.

I. Answer any five from the following

1. Verify the condition for integrability for $\left(y^{2}+z^{2}-x^{2}\right) d x-2 x y d y-2 x z d z=0$
2. Form the partial differential equation by eliminating arbitrary constants a and b from $z=\left(x^{2}+a\right)\left(y^{2}+b\right)$.
3. Solve $p+q=\sin x+\sin y$
4. Find the general solution of $\left(D-D^{\prime}\right)^{2} z=e^{x+y}$.
5. Is the subset $W=\left\{\left(x_{1}, x_{2}, x_{3}\right) / x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2} \leq 0\right\}$ of the vector space $V_{3}(R)$ is a subspace of $V_{3}(R)$? Justify.
6. In a n dimensional vector space $V(F)$, prove that any $n+1$ elements of V are linearly dependent.
7. Find the matrix of the linear transformation $T: V_{3}(R) \rightarrow V_{2}(R)$ defined by $T(x, y, z)=(x+y, y+z)$ relative to the standard bases of $V_{3}(R)$ and $V_{2}(R)$.
8. Find the scalar factors h_{1}, h_{2}, h_{3} for cylindrical polar coordinates.
II. Answer any seven from the following
9. Solve $z^{2} d x+\left(z^{2}-2 y z\right) d y+\left(2 y^{2}-y z-z x\right) d z=0$.
10. Solve $z(x+y) p+z(x-y) q=x^{2}+y^{2}$.
11. Solve $x^{2} p^{2}+y^{2} q^{2}=z^{2}$ using the transformation $u=\log x, v=\log y, w=\log z$
12. Solve $p(1+q)=z q$.
13. Find a complete integral of $2 x z-p x^{2}-2 q x y+p q=0$ using Charpit's method.
14. Find the general solution of $\left(D^{2}-2 D D^{\prime}+D^{\prime 2}\right) z=12 x y$.
15. Derive the Fourier series solution of one dimensional heat equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$
16. Derive the arc element and volume element for spherical coordinates.
17. Derive $e_{\rho}, e_{\varphi}, e_{z}$ in terms of i, j, k and then find i, j, k in terms of $e_{\rho}, e_{\varphi}, e_{z}$.
III. Answer any three from the following 3 X 6=18

18 Prove that the union of any two subspaces of a vector space V over a field F is a subspace if and only if one is contained in the other.
19 Prove that if S is a nonempty subset of a vector space $V(F)$ then
(i) $\quad L(S)$ is a subspace of V.
(ii) $\quad L(S)$ is the smallest subspace of V containing S.

20 Given the matrix $A=\left[\begin{array}{cc}1 & 2 \\ 0 & 1 \\ -1 & 3\end{array}\right]$ find the linear transformation $T: V_{2}(R) \rightarrow V_{3}(R)$ relative to the bases $B_{1}=\{(1,1),(-1,1)\}$ and $B_{2}=\{(1,1,1),(1,-1,1),(0,0,1)\}$

21 If T is a linear transformation from $V_{3}(R)$ into $V_{4}(R)$ defined by $T(1,0,0)=(0,1,0,2), T(0,1,0)=,(0,1,1,0), T(0,0,1)=(0,1,-1,4)$. Find the range space, null space, rank and nullity of T.

