ST.JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE- 27

B.Sc. MATHEMATICS -VI SEMESTER

SEMESTER EXAMINATION- APRIL 2018
MT 6115: MATHEMATICS-VII

Time: $21 / 2 \mathrm{hrs}$
Maximum marks : 70

This question paper has three parts and two printed pages.
I. Answer any five questions.

1. Determine whether the subset $W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2} \leq 0\right\}$ of $V_{3}(R)$ is a subspace of $V_{3}(R)$?
2. Verify if the vectors $(3,1,1),(2,-1,5)$ and $(4,0,3)$ are linearly independent in R^{3}.
3. Give an example of a linear map which is onto but singular.
4. Form the partial differential equation from $z=a x y+b$
5. Solve the equation $p=e^{q}$
6. Verify the condition for integrability of the equation $(y z+2 x) d x+(z x-2 z) d y+(x y-2 y) d z=0$.
7. Solve $\frac{d x}{y^{2} z}=\frac{d y}{x^{2} z}=\frac{d z}{y^{2} x}$.
8. Find h_{1}, h_{2}, h_{3} for cylindrical coordinates.
II. Answer any three questions.
9. Prove that in an n dimensional vector space $V(F)$
(i) any $\mathrm{n}+1$ elements of V are linearly dependent.
(ii) no set of $\mathrm{n}-1$ elements can span V .
10. If $T: R^{2} \rightarrow R^{2}$ is a linear transformation such that $T(1,0)=(1,1)$ and $T(0,1)=(-1,2)$, then show that T maps the square with vertices $(0,0),(1,0),(1,1)$ and $(0,1)$ into a parallelogram.
11. Find the linear transformation $T: R^{3} \rightarrow R^{3}$ whose range space is spanned by $(1,0,-1)$ and $(1,2,2)$
12. Prove that every vector space V over the real field R of dimension n is isomorphic to $V_{n}(R)$.

III. Answer any seven questions.

13. Solve $\frac{d x}{x^{2}+y^{2}+y z}=\frac{d y}{x^{2}+y^{2}-z x}=\frac{d z}{z(x+y)}$
14. Form the partial differential equation of all the spheres of radius 3units having their centre on the xy-plane.
15. Solve the partial differential equation $p^{3}+q^{3}=27 z$
16. Solve $z^{2}\left(p^{2} x^{2}+q^{2}\right)=1$
17. Solve the given equation using Charpit's method of solution: $z^{2}=p q x y$
18. Solve : $2 r-s-3 t=5 e^{x-y}$
19. The ends A and B of a rod 20 cm long have the temperature at $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ until steady state prevails. If the temperatures at A and B are suddenly reduces to $0^{\circ} \mathrm{C}$ and maintained $0^{0} C$, find the temperature at a distance x from A at time t.
20. Express the vector $\vec{f}=2 x \hat{i}-2 y^{2} \hat{j}+x z \hat{k}$ in cylindrical coordinates.
21. Derive the unit vectors $\hat{e}_{\rho}, \hat{e}_{\theta}, \hat{e}_{\phi}$ in terms of $\hat{i}, \hat{j}, \hat{k}$ for spherical coordinates.
