ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 B.Sc. MATHEMATICS - VI SEMESTER
 SEMESTER EXAMINATION: APRIL 2018
 MT6115 : MATHEMATICS - VII

Time- $21 / 2$ hrs.
Max Marks-70

This question paper has three parts and two printed pages.
I. Answer any five from the following

1. Solve $\frac{d x}{y^{2}}=\frac{d y}{x^{2}}=\frac{d z}{x^{2} y^{2} z^{2}}$.
2. Form the partial differential equation by eliminating arbitrary constants a and b from $z=a x+b y+a^{2}+b^{2}$.
3. Solve $p e^{y}=q e^{x}$.
4. Solve $\left(D^{2}-2 D D^{\prime}+D^{\prime 2}\right) z=0$.
5. Write the expression for arc element and volume element of cylindrical coordinates.
6. Show that the subset $W=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}+x_{2}+x_{3}=0\right\}$ of the vector space $V_{3}(R)$ is a subspace of $V_{3}(R)$.
7. Show that the set $B=\{(1,1,0),(1,0,1),(0,1,1)\}$ is a basis of the vector space $V_{3}(R)$.
8. Let $T: V \rightarrow W$ be a non-singular linear map, then prove that $T^{-1}: W \rightarrow V$ is also a non-singular linear map.
II. Answer any seven from the following
9. Verify the condition for integrability and solve the differential equation

$$
\left(2 x^{2}+2 x y+2 x z^{2}+1\right) d x+d y+2 z d z=0 .
$$

10. Form a partial differential equation by eliminating arbitrary constants f and g from $z=\frac{1}{y}[f(x+a y)+g(x-a y)]$.
11. Solve $\frac{y-z}{y z} p+\frac{z-x}{z x} q=\frac{x-y}{x y}$.
12. Solve $p(1+q)=z q$.
13. Solve $p x+q y=p q$ using Charpit's method.
14. Find the general solution of $2 r-s-3 t=5 e^{x-y}$.
15. A lightly stretched string with fixed end points $x=0$ and $x=l$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. If it is released from rest in this position, find the displacement $u(x, t)$.
16. Derive arc element and volume element in spherical co-ordinate system.
17. Express the vector $\vec{A}=z \hat{i}-2 x \hat{j}+y \hat{k}$ in terms of cylindrical co-ordinates.

III. Answer any three from the following

18. Prove that the intersection of any two subspaces of a vector field $V(F)$, is also a subspace of $V(F)$. Is union of two subspaces a subspace? Justify.
19. An ordered set $\left\{\alpha_{1}, \alpha_{2}, \ldots \ldots . . \alpha_{n}\right\}$ of non-zero n vectors of a vector space $V(F)$ with $\alpha_{1} \neq 0$, is linearly dependent if and only if one of the vectors say α_{k} where $2 \leq \mathrm{k} \leq \mathrm{n}$, is a linear combination of its preceding ones.
20. Find the matrix of the linear transformation $T: V_{2}(R) \rightarrow V_{3}(R)$ defined by $T(x, y)=(2 y-x, y, 3 y-3 x)$ relative to the bases $B_{1}=\{(1,1),(-1,1)\}$ and $B_{2}=\{(1,1,1),(1,-1,1),(0,0,1)\}$.
21. State and prove rank nullity theorem.
