

Register Number: Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 B.Sc. MATHEMATICS – VI SEMESTER SEMESTER EXAMINATION: APRIL 2018 <u>MT 6215 MATHEMATICS - VIII</u>

Time: 2 ¹/₂ hrs

Max Marks: 70

This paper contains TWO printed pages and THREE parts.

- I Answer any FIVE of the following.
- 1. Evaluate: $\lim_{z \to e^{\frac{i\pi}{2}}} \frac{z^3 + z^2 + 1 + i}{z^6 + 1}$.
- 2. Define (i) Analytic function (ii) Harmonic function.

3. If $f(z) = z^2$, where z = x + iy, show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 16|z|^2$.

- 4. Evaluate: $\int_{C} \frac{z^2}{z+1-i} dz$, where C is the circle $|z| = \frac{3}{2}$.
- 5. Find the fixed points of the bilinear transformation $w = \frac{z-9}{z+1}$.
- 6. Using Newton-Raphson method find x_1 , given that $x \log_{10} x = 12.34$ and $x_0 = 10$.
- 7. Evaluate: $L [10^{t} (1-2\sin^2 5t)]$.
- 8. Find the inverse Laplace transform of $\frac{s+1}{s(s+2)-1}$.

II Answer any SEVEN of the following.

7 x 6 = 42

9. If z is a complex variable, show that the locus of the point z satisfying the relation

|z+1|+|z-1|=4 is an ellipse and find its eccentricity.

5 X 2 = 10

10. State and prove the sufficient conditions for a function f(z) = u + iv to be analytic in a domain D. 11. Show that $u = \log \sqrt{x^2 + y^2}$ is harmonic and find its harmonic conjugate.

12. Find the real part of the analytic function whose imaginary part is $\left(r - \frac{1}{r}\right)\sin\theta$.

13. Evaluate:
$$\int_{C} \frac{\cos \pi z}{e^{2z}(z+1)^2(z-2)} dz$$
, where C is the ellipse $9x^2 + 4y^2 = 36$.

14. (i) If a complex function f(z) is analytic within and on the circle C: |z-a| = r, then prove that

$$|f^{(n)}(a)| \leq \frac{Mn!}{r^n}$$
, where *M* is the maximum value of $|f(z)|$ on *C* and $n = 0, 1, 2, ...$

(ii) If f(z) is analytic and bounded for all z in the entire complex plane, prove that f(z) is constant.

- 15. Discuss the transformation $w = z^2$.
- 16. Define: (i) Bilinear transformation (ii) The cross ratio of four points.

Prove that a bilinear transformation preserves the cross ratio of four points.

17. Find the bilinear transformation which maps $z = -1, 1, \infty$ onto w = -i, -1, i.

III Answer any THREE of the following.

3 x 6 = 18

- 18. Solve the initial value problem y' = y + x, y(0) = 1, using the modified Euler's method with
 - h = 0.05 for $x \in [0, 0.1]$.
- 19. Evaluate: (i) $\int_{0}^{\infty} \frac{e^{-t} \sin t}{t} dt$ (ii) $L^{-1}[\log(s+1)]$.
- 20. Define Heaviside function H(t-a). Express $f(t) = \begin{cases} t^2, & 0 < t < \pi \\ \pi t, & t > \pi \end{cases}$ in terms of Heaviside function and then find L[f(t)].

21. Find
$$f(t)$$
 from the equation $f'(t) = t + \int_{0}^{t} f(t-u) \cos u \, du$, given $f(0) = 4$.