ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 B.Sc. MATHEMATICS - VI SEMESTER
 SEMESTER EXAMINATION: APRIL 2018
 MT 6215 MATHEMATICS - VIII

Time: $21 / 2 \mathrm{hrs}$
Max Marks: 70
This paper contains TWO printed pages and THREE parts.
I Answer any FIVE of the following.

1. Evaluate: $\lim _{z \rightarrow e^{\frac{\pi}{2}}} \frac{z^{3}+z^{2}+1+i}{z^{6}+1}$.
2. Define (i) Analytic function (ii) Harmonic function.
3. If $f(z)=z^{2}$, where $z=x+i y$, show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=16|z|^{2}$.
4. Evaluate: $\int_{C} \frac{z^{2}}{z+1-i} d z$, where C is the circle $|z|=\frac{3}{2}$.
5. Find the fixed points of the bilinear transformation $w=\frac{z-9}{z+1}$.
6. Using Newton-Raphson method find x_{1}, given that $x \log _{10} x=12.34$ and $x_{0}=10$.
7. Evaluate: $L\left[10^{t}\left(1-2 \sin ^{2} 5 t\right)\right]$.
8. Find the inverse Laplace transform of $\frac{s+1}{s(s+2)-1}$.

II Answer any SEVEN of the following.

$$
7 \times 6=42
$$

9. If z is a complex variable, show that the locus of the point z satisfying the relation $|z+1|+|z-1|=4$ is an ellipse and find its eccentricity.
10. State and prove the sufficient conditions for a function $f(z)=u+i v$ to be analytic in a domain D .
11. Show that $u=\log \sqrt{x^{2}+y^{2}}$ is harmonic and find its harmonic conjugate.
12. Find the real part of the analytic function whose imaginary part is $\left(\mathrm{r}-\frac{1}{\mathrm{r}}\right) \sin \theta$.
13. Evaluate: $\int_{C} \frac{\cos \pi z}{e^{2 z}(z+1)^{2}(z-2)} d z$, where C is the ellipse $9 x^{2}+4 y^{2}=36$.
14. (i) If a complex function $f(z)$ is analytic within and on the circle $C:|z-a|=r$, then prove that $\left|f^{(n)}(a)\right| \leq \frac{M n!}{r^{n}}$, where M is the maximum value of $|f(z)|$ on C and $n=0,1,2, \ldots$
(ii) If $f(z)$ is analytic and bounded for all z in the entire complex plane, prove that $f(z)$ is constant.
15. Discuss the transformation $w=z^{2}$.
16. Define: (i) Bilinear transformation (ii) The cross ratio of four points.

Prove that a bilinear transformation preserves the cross ratio of four points.
17. Find the bilinear transformation which maps $z=-1,1, \infty$ onto $w=-i,-1, i$.

III Answer any THREE of the following.

$3 \times 6=18$
18. Solve the initial value problem $y^{\prime}=y+x, y(0)=1$, using the modified Euler's method with $h=0.05$ for $x \in[0,0.1]$.
19. Evaluate: (i) $\int_{0}^{\infty} \frac{e^{-t} \sin t}{t} d t \quad$ (ii) $L^{-1}[\log (s+1)]$.
20. Define Heaviside function $H(t-a)$. Express $f(t)=\left\{\begin{array}{ll}t^{2}, & 0<t<\pi \\ \pi t, & t>\pi\end{array}\right.$ in terms of Heaviside function and then find $L[f(t)]$.
21. Find $f(t)$ from the equation $f^{\prime}(t)=t+\int_{0}^{t} f(t-u) \cos u d u$, given $f(0)=4$.

