ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27
 MATHEMATICS - VI SEMESTER

 SEMESTER EXAMINATION: APRIL 2018

 SEMESTER EXAMINATION: APRIL 2018
 MT 6216 : MATHEMATICS VIII

Time : $2 \frac{1}{2} \mathrm{hrs}$
Maximum marks : 70
This question paper has TWO printed pages and THREE parts.

I Answer any FIVE questions:

1. Find the locus of the point z satisfying the relation $|z+i| \leq 3$
2. Evaluate $\lim _{z \rightarrow i} \frac{z^{2}+1}{z^{6}+1}$
3. Check whether $u=e^{x} \cos y+x y$ is harmonic.
4. Evaluate $\oint_{C}(\bar{z})^{2} d z$ around the circle $\mathrm{C}:|z|=1$
5. Find the fixed points of the transformation $w=\frac{z-1}{z+1}$
6. Find a real root of $x^{3}-3 x+1.06=0$, lying between 0 and 1 , using bisection method in two stages, if it exists.
7. Find the Laplace transform of $\sin (m t)$ and $\cos (m t)$.
8. Find the inverse Laplace transform of $\frac{1}{s^{2}-4 s+6}$

II Answer any SEVEN questions:
9. Show that $\arg \left(\frac{z-1+i}{z+i}\right)=\frac{\pi}{4}$ represents a circle. Find its centre and radius.
10. Show that $f(z)=\log (z)$ is analytic and hence find $f^{\prime}(z)$.
11. If $f(z)=u+i v$ is analytic then show that $\left[\frac{\partial}{\partial x}|f(z)|\right]^{2}+\left[\frac{\partial}{\partial y}|f(z)|\right]^{2}=\left|f^{\prime}(z)\right|^{2}$
12. Find the analytic function whose imaginary part is $e^{x} \sin y$.
13. State and prove Cauchy's Integral Theorem.
14. Evaluate $\int_{C} \frac{z+4}{z^{2}+2 z+5} d z$, where C is the circle $|z+1+i|=2$
15. Find the orthogonal trajectories of the family of curves $x^{3} y-x y^{3}=c$
16. Show that the transformation $w=\frac{1}{z}$ transforms a circle into a circle or to a straight line.
17. Find the bilinear transformation which maps the points $1, i,-1$ onto the points $0, i, \infty$.

III Answer any THREE questions:
18. Find the root of the equation $\tan x=x$ near $\mathrm{x}=4.5$, correct to four decimal places using Newton-Raphson method.
19. Solve $\frac{d y}{d x}=x+y^{2}$ with initial condition $\mathrm{y}=1$ when $\mathrm{x}=0$ for $\mathrm{x}=0(0.2) 0.4$, using Runge-Kutta method of fourth order.
20. Find the Laplace transform of the function $\mathrm{f}(\mathrm{t})$ with period $\frac{2 \pi}{w}$ where $\mathrm{f}(\mathrm{t})=\left\{\begin{array}{l}\text { Sin wt } 0 \leq t \leq \frac{\pi}{w} \\ 0 \quad \frac{\pi}{w} \leq t \leq \frac{2 \pi}{w}\end{array}\right.$
21. Using convolution theorem find $L^{-1}\left[\frac{1}{(s+5)(s+3)}\right]$

