ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 MATHEMATICS – VI SEMESTER SEMESTER EXAMINATION: APRIL 2018 MT 6216 : MATHEMATICS VIII

Time : $2\frac{1}{2}$ hrs

Maximum marks : 70

This question paper has TWO printed pages and THREE parts.

I Answer any FIVE questions: (2x5=10)

- 1. Find the locus of the point z satisfying the relation $|z+i| \le 3$
- 2. Evaluate $\lim_{z \to i} \frac{z^2 + 1}{z^6 + 1}$
- 3. Check whether $u = e^x \cos y + xy$ is harmonic.
- 4. Evaluate $\oint_C (\bar{z})^2 dz$ around the circle C: |z| = 1
- 5. Find the fixed points of the transformation $w = \frac{z-1}{z+1}$
- 6. Find a real root of $x^3 3x + 1.06 = 0$, lying between 0 and 1, using bisection method in two stages, if it exists.

(6x7=42)

- 7. Find the Laplace transform of sin(mt) and cos(mt).
- 8. Find the inverse Laplace transform of $\frac{1}{s^2 4s + 6}$

II Answer any SEVEN questions:

- 9. Show that $\arg\left(\frac{z-1+i}{z+i}\right) = \frac{\pi}{4}$ represents a circle. Find its centre and radius.
- 10. Show that $f(z) = \log(z)$ is analytic and hence find f'(z).
- 11. If f(z) = u + iv is analytic then show that $\left[\frac{\partial}{\partial x} |f(z)|\right]^2 + \left[\frac{\partial}{\partial y} |f(z)|\right]^2 = |f'(z)|^2$
- 12. Find the analytic function whose imaginary part is $e^x \sin y$.
- 13. State and prove Cauchy's Integral Theorem.
- 14. Evaluate $\int_C \frac{z+4}{z^2+2z+5} dz$, where C is the circle |z+1+i|=2

- 15. Find the orthogonal trajectories of the family of curves $x^3y xy^3 = c$
- 16. Show that the transformation $w = \frac{1}{z}$ transforms a circle into a circle or to a straight line.
- 17. Find the bilinear transformation which maps the points 1, i, -1 onto the points $0, i, \infty$.

III Answer any THREE questions:

18. Find the root of the equation $\tan x = x$ near x=4.5 ,correct to four decimal places using Newton-Raphson method.

(6x3=18)

- 19. Solve $\frac{dy}{dx} = x + y^2$ with initial condition y=1 when x=0 for x=0(0.2)0.4, using Runge-Kutta method of fourth order.
- 20. Find the Laplace transform of the function f(t) with period $\frac{2\pi}{w}$ where

$$f(t) = \begin{cases} Sin \ wt \quad 0 \le t \le \frac{\pi}{w} \\ 0 \quad \frac{\pi}{w} \le t \le \frac{2\pi}{w} \end{cases}$$

21. Using convolution theorem find $L^{-1}\left[\frac{1}{(s+5)(s+3)}\right]$