Register Number:

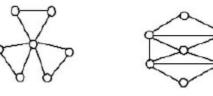
DATE:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 M.Sc. MATHEMATICS – IV SEMESTER SEMESTER EXAMINATION: APRIL 2018 <u>MT 0214: GRAPH THEORY</u>

Tim	e- 2 ½ hrs This paper contains two printed pages.	Max Marks-70
Answ	er any <u>seven</u> questions.	(7x10=70)
1.	State and prove Menger's Theorem.	(10)
2.	a) Define the crossing number of a graph. Draw a graph with crossing number one. b) Prove or disprove: K_5 and $K_{3,3}$ are planar.	
	c) If G is a maximal outer planar graph with $p \ge 3$ vertices, all lying	ng on the exterior face,

c) If G is a maximal outer planar graph with $p \ge 3$ vertices, all lying on the exterior face, then prove that G has p-2 interior faces. (2+4+4)

3. a) Give the chromatic number and edge chromatic number of the following graphs.



b) For any (p,q) graph G, prove that $\frac{p}{\beta_0} \le \chi(G) \le p - \beta_0 + 1$ where β_0 is the point independence number and χ is the chromatic number of G. (4+6)

- 4. What is the four color conjecture? Prove that four color conjecture holds if and only if every cubic bridgeless plane map is four colorable. (10)
- 5. State and prove Konig's Theorem. (10)
- 6. Prove that a graph G is 2-factorable if and only if G is r-regular for some positive even integer r. (10)
- 7. Prove that a nontrivial connected graph G has a strong orientation if and only if G contains no bridge. (10)

- 8. Prove that a nontrivial tournament T is Hamiltonian if and only if T is strong. (10)
- 9. Define the edge independence number β_1 and edge covering number α_1 of a graph. For any nontrivial, connected (p,q) graph G, prove that $\alpha_1 + \beta_1 = p$ (10)
- 10. Define a minimal and minimum dominating set of a graph. If G is a graph with n

vertices, then prove that
$$\frac{n}{1+\Delta(G)} \le \gamma(G) \le n - \Delta(G).$$
 (10)