Register Number:

DATE:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 M.Sc. MATHEMATICS- IV SEMESTER SEMESTER EXAMINATION: APRIL 2018 <u>MT 0317 : MAGNETOHYDRODYNAMICS</u>

	Time- 2 ½ hrs	Max Marks-70
This paper contains 1 printed page		
ANSV	ER ANY 7 OUT OF THE FOLLOWING QUESTIONS	10*7=70 Marks
1.	a. Derive Faraday's law of induction for stationary circuit.b. Prove or disprove the statement that the tangential component across the interface of two media.	nt of magnetic field is continuous [5 + 5]
2.	a. State Continuum Hypothesis.b. Derive the magnetic induction equation for a perfectly conduction	acting fluid in its real form. [2+8]
3.	Show that the tangential component of electric field is continue two electromagnetic media.	bus at the interface between the [10]
4.	Derive $\nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$. Also discuss the solenoidal property of	magnetic field. [10]
5.	5. Show that in a magnetostatic configuration with axisymmetric poloidal magnetic field. The	
	magnetic stream function U satisfies the equation $\frac{\partial (r^{-2}\Delta U, U)}{\partial (r, z)}$	= 0. [10]
6.	State and prove Chandrashekhar's theorem on force free magn	etic field. [10]
7.	Examine the nature of a force free magnetic field in a rectangu	lar coordinate system. [10]
8.	a. What is Toroidal Magnetic field?	
	b. Derive Bennet's relation.	[2+8]
9.	Discuss the applications of Alfven's waves.	[10]
10.	Derive the Walen's relation.	[10]