ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 M.Sc. MATHEMATICS - IV SEMESTER SEMESTER EXAMINATION: APRIL 2018 MT-0416 - THEORY OF NUMBERS

Time- $2^{1 / 2}$ hrs.
Max Marks-70

This paper contains 2 printed pages.
Answer any seven questions.
$(7 \times 10=70)$

1. Verify these for Euler's totient function,
a) $\phi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1}$ for prime p and $\alpha \geq 1$.
b) $\quad \phi(m n)=\phi(m) \phi(n)\left(\frac{d}{\phi(d)}\right)$, where $d=(m, n)$.
c) $\quad \phi(m n)=\phi(m) \phi(n)$ if $(m, n)=1$.
d) $a \mid b$ implies $\phi(a) \mid \phi(b)$.
e) $\quad \phi(n)$ is even for $n \geq 3$. Moreover, if n has r distinct odd prime factors, then $2^{r} \mid \phi(n)$.
2. If $n \geq 1$, then prove the following,
a) $\log n=\sum_{d \mid n} \Lambda(d)$
b) $\quad \sum_{d \mid n} \lambda(d)=\left\{\begin{array}{c}1, \text { if nisa square } \\ 0, \text { otherwise }\end{array}\right.$ also $\lambda^{-1}(n)=|\mu(n)|$ for all n.
3. State and prove Lagrange's Theorem.
4. Solve for x in $x \equiv 1(\bmod 3), x \equiv 3(\bmod 5), x \equiv 6(\bmod 7), x \equiv 8(\bmod 11)$
5. a) State and prove Euler's criterion.
b) Legendre's symbol is a completely multiplicative function.
6. State and prove Gauss's lemma.
7. Let p be an odd prime and let d be any positive divisors of $p-1$. Then in every reduced residue system $\bmod p$ there are exactly $\phi(d)$ numbers a such that $\exp _{p}(a)=d$.In particular, when $d=\phi(p)=p-1$ there are exactly $\phi(p-1)$ primitive roots $\bmod p$
8. State and prove Euler's pentagon-number theorem.
9. Determine the upper bound for $p(n)$.
10. State and prove Jacobi's triple product identity.
