ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 M.Sc. MATHEMATICS - IV SEMESTER SEMESTER EXAMINATION: APRIL 2018 MT-0416 - THEORY OF NUMBERS

Time- $\mathbf{2 ~}^{1 / 2} \mathbf{h r s}$.
Max Marks-70

This paper contains 1 printed page.

Answer any seven questions.

1. a) If f and g are multiplicative, prove that their Dirichlet product is multiplicative.
b) If g and $f^{*} g$ are multiplicative, then prove that f is also multiplicative.
2. a) Let f be multiplicative, then prove that f is completely multiplicative iff
$f^{-1}(n)=\mu(n) f(n), \forall n \geq 1$.
b) State and prove uniqueness theorem with respect to multiplicative functions.
3. Write the partition for $6,7,8$ and 9 .
4. Solve for x in $x \equiv 2(\bmod 3), x \equiv 2(\bmod 5), x \equiv 3(\bmod 7), x \equiv 6(\bmod 11)$
5. Evaluate $(-1 \mid p)$ and $(2 \mid p)$.
6. State and prove Quadratic reciprocity law.
7. Let p be an odd prime. Then prove the following,
a) If g is a primitive root modulo p then g is also a primitive root modulo p^{α} for all $\alpha \geq 1$, if and only if g^{p-1} is not congruent to 1 modulo p^{2}.
b) There is at least one primitive root $g \bmod p$ which satisfies g^{p-1} is not congruent to 1 modulo p^{2}, hence there exist at least one primitive root $\bmod p^{\alpha}$ if $\alpha \geq 2$.
8. Prove that, for $|x|<1$, we have $\prod_{m=1}^{\infty} \frac{1}{1-x^{m}}=\sum_{n=0}^{\infty} p(n) x^{n}$, where $p(0)=1$.
9. State and prove Euler's pentagon-number theorem.
10. State and prove Jacobi's triple product identity.
