Register Number: Date:

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 **M.Sc. MATHEMATICS - IV SEMESTER SEMESTER EXAMINATION: APRIL 2018 MT-0416 – THEORY OF NUMBERS**

Time- 2 ¹/₂ hrs.

This paper contains 1 printed page.

Answer any seven questions.

- 1. a) If f and g are multiplicative, prove that their Dirichlet product is multiplicative. b) If g and f * g are multiplicative, then prove that f is also multiplicative. (4+6)2. a) Let f be multiplicative, then prove that f is completely multiplicative iff $f^{-1}(n) = \mu(n)f(n), \forall n \ge 1.$ b) State and prove uniqueness theorem with respect to multiplicative functions. (7+3)3. Write the partition for 6, 7, 8 and 9. (10)4. Solve for x in $x \equiv 2 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x \equiv 3 \pmod{7}$, $x \equiv 6 \pmod{11}$ (10)5. Evaluate $(-1 \mid p)$ and $(2 \mid p)$. (10)State and prove Quadratic reciprocity law. (10)6. 7. Let *p* be an odd prime. Then prove the following, a) If g is a primitive root modulo p then g is also a primitive root modulo p^{α} for all $\alpha \ge 1$, if and only if g^{p-1} is not congruent to 1 modulo p^2 . b) There is at least one primitive root $g \mod p$ which satisfies g^{p-1} is not congruent to 1 modulo p^2 , hence there exist at least one primitive root mod p^{α} if $\alpha \ge 2$. (10)8. Prove that, for |x| < 1, we have $\prod_{m=1}^{\infty} \frac{1}{1-x^m} = \sum_{n=0}^{\infty} p(n)x^n$, where p(0) = 1. (10)9. State and prove Euler's pentagon-number theorem. (10)
- 10. State and prove Jacobi's triple product identity. (10)

- - (7x10=70)

Max Marks-70