

(3)

Register Number:	
Date:	

JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27

M.Sc. PHYSICS - IV SEMESTER **SEMESTER EXAMINATION: APRIL 2018.** PH-DE0517: MATERIAL SCIENCE

Time:

: 2.5	5 hours This paper conta	ins 3 printed pages	Max Marks	s: 70
	P.	ART – A		
	Answer any 7 questions. Each qu	uestion carries 10 marks.	(7x10=70)	
1. (i) What is level of structure? Depending on the level how are material				l. (5)
	(ii) Define: (i) Pseudo Elasticity (ii) super Elasticity behavior		(2)
	(iii) What are the different methods	available for creating nanop	particles?	(3)
2.	(a) (i) How do you calculate the	e band gap from UV-Vis abs	sorption spectra of	`thir
	films consisting of MgO ₂ a	and other metal complexes?		(2)
	(ii) Explain the principle of S can obtain using this meth	•	ne kind of material	l one
	(b) (i) Draw General scheme of p	preparation of sol-gel method	d.	(3)
	(ii) What is the difference be method?	etween sol-gel method and	Chemical precipita	ation (2)
2				
3.	(i) Explain lever rule with Tie Line	c.		(4)
	(ii) Derive Phase rule and discuss	its advantages and limitation	18.	(6)

4. What are the failures of Langevin theory? How was Weiss able to explain the essential features of these materials by extending Langevin's theory of paramagnetism.

- 5. (a) Two metals A (melting point 800 °C) and B (melting point 600 °C) form a binary isomorphous system. An alloy having 35% B has 75% solid and rest liquid whereas an alloy having 55% B has 25% solid at 700 °C. Estimate the composition of solidus and liquidus at the above temperature.
 - (b) A binary alloy having 28 wt % Cu & balance Ag solidifies at 779 °C. The solid consists of two phases α & β . Phase α has 9% Cu whereas phase β has 8% Ag at 779 °C. At room temperature these are pure Ag & Cu respectively. Sketch the phase diagram. Label all fields and lines. Melting points of Cu & Ag are 1083° & 960 °C respectively. Estimate the amount of α & β in the above alloy at 779 °C and at room temperature.
- 6. (a) A copper block of mass 2.5 Kg is heated in a furnace to a temperature of 800 °C and then placed on a large ice block. What is the maximum amount of ice that can melt? Specific heat of Copper is 0.39 Jg⁻¹C⁻¹. Heat of fusion of water =335 Jg⁻¹ (5+5)
 - (b) An iron rod of density 7700 kg m⁻³ and specific heat capacity 460.4 J kg⁻¹k⁻¹ is subjected to cycles of magnetization at the rate of 60 C/s. If the area of B-H curve for the specimen is 5000 Joules, find the rise in temperature per minute of the specimen, assuming that the heat generated is not radiated.
- 7. (a) What is the importance of hysteresis curves? (5)
 - (b) What are antiferromagnetic materials and mention their properties. (3)
 - (c) What are ferrites? (2)
- 8. (a) What are the basic entities responsible for thermal conduction of a solid?
 - (b) Define Coefficient of Thermal Conductivity? (2 marks each)
 - (c) Define thermal Diffusivity.
 - (d) Derive the unit for thermal conductivity.
 - (e) What is meant by temperature gradient?

9. ((2 marks each)				
(1	(b) Write vector differential equation of Seebeck coefficient				
(0	(c) What is chromel and alumel?				
(d) Define (i) law of intermediate metals (ii) law of intermediate temperatures					
10.	(a) Explain the phase diagram of Silver-Lead system	(8)			
	(b) Define: (i) Peritectic point (ii) Peritectoid point	(2)			