

Register humber:

Late: 17-11-2020

ST. JOSEPH'S COLLEGE (AUTONOMOUS), BANGALORE-27 M.Sc. MATHEMATICS-III SEMESTER SEMESTER EXAMINATION: NOVEMBER-2020 MT-9118: FUNCTIONAL ANALYSIS

Duration: 2.5 Hours

Max. Marks: 70

The paper contains <u>ONE</u> page and <u>ONE</u> part	
I. ANSWER ANY SEVEN FULL OF THE FOLLOWING.	
1. State and prove Holder's and Minkowski's inequality for l_p^n -space	(7x10=70)
2. Prove that l_{∞} is a Banach space with the norm, $ x = \sup_{i} x_{i} , x \in l_{\infty}$, where $l_{\infty} = \{x = (x_{1}, x_{2}, \dots, x_{n}, \dots) \sup x_{i} < \infty\}$	[5+5]
3. Let $C[0,1]$ be the space of all \cdots	[10]
3. Let $C[0,1]$ be the space of all real valued continuous functions defined on $[0,1]$. Proof $C[0,1]$ is a Banach space with the norm $ f = \max\{ f(x) : x \in [0,1]\}$	
4. Show that a normed linear space is a Banach space if and only if $S = \{x : x = 1\}$ is 5. State and prove Riesz Lemma	[10]
5. State and prove Riesz Lemma.	complete. [10]
6. Let X and Y be two normed linear spaces. Prove that the vector space $B(X,Y)$ the se linear transformations of X into Y is a normed linear space with respect to the p operations and the norm defined by $ T = \sup\{ T(x) : x \le 1\}$. Further prove, if space the show that $B(X,Y)$ is also a Banach space.	[10] t of continuous ointwise linear Y is a Banach
7. State and prove Bessel's Inequality	[10]
8. (a) Will $C[a,b]$ the set of all continuous functions in $[a,b]$ with the vorm $ f = \max\{ f \}$	$[10]$ $(z): x \in [a,b]$
(b) Will l^p space with norm $ x = (\sum x_i ^p)^{1/p}$ be an inner product space for all p . I the for what value of p will it be an inner product space?	f not for all p ,
9. State and prove the uniqueness of Hahn-Banach extension theorem.	[5 + 5]
10. State and prove Closed Graph theorem.	[10]
Prove Glosed Graph theorem.	[10]