

Register Number:

Date: 21-11-2020

St. Joseph's College, Autonomous, Bangalore M.Sc Mathematics-III Semester

End semester Examination: November 2020 MTDE9318: Commutative Algebra

Duration: 2.5 Hours

Max. Marks:70

- 1. The paper contains two pages.
- 2. Attempt any SEVEN FULL questions.
- 3. Each question carries 10 marks.
- 1. Let A be a ring and let

$$A[[x]] = \{ f = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots \mid a_i \in A \}$$

be the ring of formal power series with coefficients in A.

(a) Show that f is a unit in A[[x]] if and only if a_0 is a unit in A.

[4 marks]

(b) Show that if f is a nilpotent then a_n is a nilpotent for all $n \ge 0$. Is the converse true?

[6 marks]

- 2. (a) Let p₁, p₂, ···, pn be prime ideals and let I be an ideal contained in

 i p₁. Show that I ⊆ p₂ for some j ∈ {1, 2, ···, n}.
 (b) Let A be a rise in this.
 [7 marks]
 - (b) Let A be a ring in which every element x satisfies $x^n = x$ for some n > 1 (n depends on x). Show that every prime ideal in A is maximal. [3 marks]
- 3. (a) Let A be a ring and Nil(A) its nilradical. Show that the following are equivalent:
 - 1. A has exactly one prime ideal.
 - 2. Every element of A is either a unit or a nilpotent.
 - 3. A/Nil(A) is a field.

[5 marks]

(b) Show that $\left(\frac{\mathbb{Q}}{\mathbb{Z}}\right) \otimes_{\mathbb{Z}} \left(\frac{\mathbb{Q}}{\mathbb{Z}}\right) = 0$

[3 marks]

(c) Show that $\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}$ and $\mathbb{C}\otimes_{\mathbb{C}}\mathbb{C}$ are not isomorphic as \mathbb{R} -modules.

[2 marks]

4. (a) State and Prove the universal property of localization of a ring A at a multiplicative subset S.

[5 marks]

(b) Let A be a ring, let $f: A \to B$ be a homomorphism of rings and let S be a multiplicatively closed subset of A. Let T = f(S). Show that $S^{-1}B$ and $T^{-1}B$ are isomorphic as $S^{-1}A$ -modules.

[5 marks]

5. (a) Let M be an A-module. Show that the following are equivalent:

- 1. M = 0
- 2. $M_p = 0$ for all prime ideals p of A.
- 3. $M_{\rm m}=0$ for all maximal ideals m of A.

[5 marks]

(b) Let A be a ring and let M be an A-module. Suppose that f_1, f_2, \dots, f_n generate the ring A. Prove that if $m \in M$ goes to 0 in each M_{f_i} then m = 0.

[5 marks]

6. (a) State and prove Lying Over Theorem.

[6 marks]

(b) State and prove Going Up Theorem.

[4 marks]

7. (a) Prove that an A-module is Noetherian if and only if every submodule of M is finitely generated.

[6 marks]

- (b) Let M be an A-module and let N_1, N_2 be submodules of M. Show that if M/N_1 and M/N_2 are Noetherian then so is $M/(N_1 \cap N_2)$ [4 marks]
- 8. (a) Let r(I) denote the radical of an ideal I. Show that if $r(I) = \mathfrak{m}$, a maximal ideal then I is a primary ideal. [5 marks]
 - (b) Is it true that "if $r(I)=\mathfrak{p}$, a prime ideal then I is a primary ideal?" Justify.

[5 marks]

- (a) Show that in a Noetherian ring A, every ideal contains a power of it's radical. Deduce that, in a
 Noetherian ring the nilradical is nilpotent.
 - (b) Let A be a Noetherian ring and $f = \sum_{n=0}^{\infty} a_n x^n \in A[[x]]$. Prove that if each a_n is nilpotent then f is nilpotent. [5 marks]
- 10. (a) Prove that in an Artin ring every prime ideal is maximal.

[4 marks]

(b) Prove that a Artin ring has only finitely many maximal ideals.

[6 marks]