

Register Number:

Date: 23-11-2020

St. Joseph's College (Autonomous), Bangalore M.Sc Mathematics - III Semester

End Semester Examination: November, 2020 MTDE9518: Algebraic Topology

Duration: 2.5 Hours

Max. Marks: 70

- 1. The paper contains two pages.
- 2. Answer any SEVEN FULL questions.
- 3. All multiple choice questions have 1 or more than one correct option. Full marks will be awarded only for writing all correct options in your answer script.
- 1. a) Show that a contractible space is path connected. Also show that \mathbb{R}^n is a contractible space for any $n \ge 1$.
 - b) A subset A of \mathbb{R}^n is star convex if there is a point $a \in A$ such that for any $x \in A$, the straight line joining x to a is completely in A. Pick out which among the following is/are star convex sets. [4m] i. Any contractible subset of \mathbb{R}^n . ii. $\{(x,y) \in \mathbb{R}^2 : xy = 0\}$ iii. Any convex subset of \mathbb{R}^n . iv. $\{(x,y) \in \mathbb{R}^2 : xy = 1\}$.
- 2. a) Let $\pi_1(X, x_0)$ be the set of homotopy classes of loops in X based at x_0 . Show that the operation "*" of concatenation is associative on $\pi_1(X, x_0)$.
 - b) Given spaces X and Y, let [X,Y] denote the set of **homotopy classes** of maps from X to Y. Let $Y = S^2 \{(0,0,1),(0,0,-1)\}$. Then the number of elemnets in $[\mathbb{R},Y]$ is: [4m] i. 1 ii. 2 iii. Uncountably many iv. Countably many.
- 3. a) Prove that the fundamental group of the circle is isomorphic to the additive group of integers. [7m]
 - b) Let $p: \mathbb{R} \to S^1$ be the map $p(t) = (\cos 2\pi i t, \sin 2\pi i t)$. Which of the following is a lift of the path $f(s) = (-\cos(\pi s), \sin(\pi s))$ via p? [3m]

4. a) Show that a covering map is an open map.

[6m]

b) Let $p:E\to B$ be a covering map. Which of the following are true? [4m] i. If B is connected then so is E. ii. If B is simply connected then so E. iii. If E is simply connected then so is B. iv. If B is simply connected and E is path connected then E is simply connected. 5. a) Show that the quotient map $q: S^2 \to \mathbb{RP}^2$ is a covering map. [7m]b) Which of the followig are covering maps? [3m]i. $p: S^1 \to S^1$ given by $p(x) = -x^2$. ii. $p:(0,\infty)\to S^1$ given by $p(t)=e^{2\pi i\log t}$. iii. $p:S^2\to S^2$ given by p(x,y,z)=(-x,-y,-z). 6. a) Let $h:S^1\to X$ be a continuous function. Show that if h is nulhomotopic then h extends to a continuous map $k: B^2 \to X$. [7m] b) Which of the following are nulhomotopic? [3m]i. The map $h: S^1 \to \tilde{S}^1$ given by h(x) = -x. ii. The projection map $h: S^1 \to [-1,1]$ given by $h(x_1,x_2) = x_1$. iii. The inclusion map $j: S^1 \to \mathbb{R}^2$. 7. a) Let $f:(X,x_0)\to (Y,y_0)$ be continuous. If f is a homotopy equivalence then show that $f_\#:\pi_1(X,x_0) o\pi_1(Y,y_0)$ is an isomorphism. [7m] b) Which of the following are homotopy equivalent to S^1 ? [3m]iii. $S^2 - \{(0,0,1), (0,0,-1)\}$ iv. $\mathbb{R}^3 - \{0\}$ ii. $S^2 - \{(0,0,1)\}$ 8. a) Show that any continuous function $f: B^2 \to B^2$ has a fixed point. Further, if A is a retract of B^2 then show that any continuous function $f:A\to A$ has a fixed point. b) Let $f:[-1,1] \to [-1,1]$ be a function satisfying $|f(x)-f(y)| \leq \frac{1}{2}|x-y|$. Then the number of fixed points of f is: [3m]i. 0 ii. 1 iii. infinite

- 9. a) Let $p: E \to B$ be a covering map. Let e_0 and e_1 be points of $p^{-1}(b_0)$ and let $H_i = p_*(\pi_1(E, e_i))$. Prove that H_0 and H_1 are conjugates, that is, if γ is a path in E from e_0 to e_1 and $\alpha = p \circ \gamma$ then show that $[\alpha] * H_1 * [\alpha]^{-1} = H_0$. Conversely, let $e_0 \in E$ and let H be a subgroup of $\pi_1(B, b_0)$ conjugate to H_0 , then prove that there exists a point $e_1 \in p^{-1}(b_0)$ such that $H = H_1$.
 - b) Let $p: E \to B$ and $p': E' \to B$ be covering maps. Let $p(e_0) = p'(e'_0) = b_0$. Show that the covering maps p and p' are equivalent if and only if the subgroups $H_0 = p_*(\pi_1(E, e_0))$ and $H'_0 = p'_*(\pi_1(E'e'_0))$ of $\pi_1(B, b_0)$ are conjugate.
- 10. a) Suppose $X=U\cup V$, where U and V are open subsets of X. Suppose that $U\cap V$ is path connected and $x_0\in U\cap V$. Let $i:U\hookrightarrow X$ and $j:V\hookrightarrow X$ be the respective incusion maps. Show that the images of the induced homomorphisms $i_*:\pi_1(U,x_0)\to\pi_1(X,x_0)$ and $j_*:\pi_1(V,x_0)\to\pi_1(X,x_0)$, generate $\pi_1(X,x_0)$.
 - b) Using the Van-Kampen theorem, compute the fundamental group of the Θ space. [2m]